Під час знаходження розв’язку задачі градієнтними методами ітераційний процес здійснюється до того моменту, поки градієнт функції в черговій точці
де
Для чисельного розв’язування задачі споживача використовуватимемо метод Франка-Вульфа.
Нехай потрібно знайти максимальне значення функції корисності
Характерною рисою даного методу є те, що обмеженням в задачі є лінійна нерівність. Ця особливість є основною для заміни нелінійної цільової функції лінійною поблизу досліджуваної точки, завдяки чому розв’язування задачі зводиться до послідовного розв’язання задач лінійного програмування.
Наприкінці першого розділу наведемо алгоритм методу Франка-Вульфа:
1. Процес знаходження розв’язку задачі починається з визначення точки, що належить області припустимих розв’язків задачі.
2. Знайдемо градієнт цільової функції в точці
3. Побудуємо лінійну функцію
4. Знайдемо максимум
5. Визначимо значення оптимального кроку обчислення
6. Обчислимо компоненти нового припустимого розв’язку за формулою
7. Знайдемо значення
8. Порівняємо отримані