Смекни!
smekni.com

Индексный метод в статистическом изучении цен (стр. 3 из 10)

Для сравнения цен одного определенного товара в текущем периоде по сравнению с базисным применяется индивидуальный индекс цен.

где - цена единицы продукции отчетного и базисного периодов.

Индекс средних цен применяется при изучении изменения цен товарных групп, цен одного товара по различным территориям и субрынкам:

(1.6)

где pi1, qi1 - цена и количество проданного i - го вида товара(товара на i-й территории или i - м субрынке) в отчетном году, i=l,…, n;

pi0, qi0 - цена и количество проданного i - го вида товара(товара на i-й территории или i - м субрынке) в базисном году, i=l,…, n.

Товары должны быть достаточно однородными, чтобы их количество поддавалось суммированию.

Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, т.е. их динамика. Анализ динамики цен осуществляется с помощью изучения ряда динамики и вычисления индексов цен.

Показатели анализа динамики могут вычисляться на постоянной и переменной базах сравнения. При этом принято называть сравниваемый уровень отчетным, а уровень, с которым производится сравнение, - базисным. Для расчета показателей анализа динамики на постоянной базе каждый уровень ряда сравнивается с одним и тем же базисным уровнем. В качестве базисного выбирается либо начальный уровень в ряду динамики (у0), либо уровень, с которого начинается какой-то новый этап развития явления (уi). Исчисляемые при этом показатели называются базисными. Для расчета показателей анализа динамики на переменной базе каждый последующий уровень ряда (yi) сравнивается с предыдущим (yi-1). Вычисленные таким образом показатели анализа динамики называются цепными.

Между цепными и базисными индивидуальными индексами существует взаимосвязь, позволяющая переходить от одних индексов к другим, - последовательное произведение цепных индивидуальные индексов дает базисный индекс последнего периода:

Ip3/0 = ip1 / 0 ip2 / 1 ip3 / 2 =

Отношение базисного индекса отчетного периода к базисному индексу предшествующего периода дает цепной индекс отчетного периода:

ip3 / 2 = ip3 /0

ip2 /0 ; ip3 / 2 =

Это правило позволяет применять так называемый цепной метод, т.е. находить неизвестный ряд базисных индексов по известным цепным и наоборот.

Основной формой индекса цен для совокупности разнородных товаров является агрегатный индекс. Цены различных товаров складывать бессмысленно. Несуммируемость элементов совокупности преодолевается путем взвешивания каждой цены по количеству проданных товаров. Сумма произведений цен товаров на их количество составляет товарооборот совокупности товаров.

Чтобы выявить непосредственно изменение цен, необходимо зафиксировать показатели количества на одном из уровней:

– базисного периода времени (формула Ласпейреса)

– текущего периода времени (формула Пааше):

.

Индексы цен, рассчитанные по формуле Ласпейреса, особенно широко применяются при расчете ИПЦ, который показывает, во сколько раз изменились бы потребительские расходы в текущем периоде по сравнению с базисным, если бы при изменении цен уровень потребления оставался прежним. Такой расчет корректен при отсутствии значительных количественных и качественных изменений в структуре потребления (во времени и по территории, если индекс рассчитывается для нескольких регионов).

Изучение динамики розничных цен (например, для получения дефлятора, позволяющего рассчитать стоимостные показатели от четного периода в сопоставимых ценах) должно быть максимально приближено к совокупности товаров, произведенных в отчетном периоде.

Результат расчета по формуле Пааше показывает, во сколько раз сумма фактических затрат населения на покупку товаров больше (меньше) суммы денег, которую население должно было бы заплатить за эти же товары, если бы цены оставались на уровне базисного периода.

Статистическим анализом доказано, что в долговременном аспекте формула Пааше занижает реальное изменение цен вследствие общественной отрицательной корреляции (относительный вес товара падает, если цена его возрастает).

Доказано, что наилучший линейный индекс лежит между индексами, вычисленными по формулам Ласпейреса и Пааше. Зарубежные статистики пытались найти компромиссную формулу.

Формула Эдворта - Маршалла:

Эта формула улавливает сдвиги в структуре покупок, но привязана к условной структуре товарооборота, не характерной ни для одного реального периода, не имеет прямого экономического смысла. Ее расчет встречает препятствия в сборе материалов.

Наиболее удачным компромиссом многие экономисты считают «идеальный» индекс Фишера:

который оценивает не только набор товаров базисного периода по ценам текущего, но и набор товаров текущего периода по ценам базисного. Применяется в случае трудностей с выбором весов или значительного изменения структуры весов.

Заключение

Цена - многофункциональное экономическое явление, ведущая рыночная категория, процессы их образования и изменения представляют собой предмет статистического исследования.

Статистика цен - самостоятельный блок, входящий как составная часть в статистику рынка и соответственно в социально-экономическую статистику. Поэтому в органах государственной статистики сформирована самостоятельная служба статистики цен.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Расчетная часть

Имеются следующие выборочные данные по 30-ти организациям, характеризующие деятельность за исследуемый период (выборка 20%-ная бесповторная):

Таблица 1

Статистическая информация о результатах производственной

деятельности организации

№ органи-зации

Среднесписочная

численность

работников, чел.

Выпуск

продукции,

млн руб.

Фонд

заработной

платы,

млн руб.

Затраты на

производство

продукции,

млн руб.

Среднегодо-вая стоимость ОПФ,

млн. руб.

1

162

36,45

11,340

30,255

34,714

2

156

23,4

8,112

20,124

24,375

3

179

46,540

15,036

38,163

41,554

4

194

59,752

19,012

47,204

50,212

5

165

41,415

13,035

33,546

38,347

6

6

158

26,86

_

8,532

22,831

27,408

7

220

79,2

_

26,400

60,984

60,923

8

190

54,720

17,100

43,776

47,172

9

163

40,424

12,062

33,148

37,957

10

159

30,21

9,540

25,376

30,210

11

167

42,418

13,694

34,359

38,562

12

205

64,575

21,320

51,014

52,500

13

187

51,612

16,082

41,806

45,674

14

161

35,42

10,465

29,753

34,388

15

120

14,4

4,32

12,528

16,000

16

162

36,936

11,502

31,026

34,845

17

188

53,392

16,356

42,714

46,428

18

164

41,0

12,792

33,62

38,318

19

192

55,680

17,472

43,987

47,590

20

130

18,2

5,85

15,652

19,362

21

159

31,8

_

9,858

26,394

31,176

22

162

39,204

11,826

32,539

36,985

23

193

57,128

18,142

45,702

48,414

24

158

28,44

8,848

23,89

28,727

25

168

43,344

13,944

35,542

39,404

26

208

70,720

23,920

54,454

55,250

27

166

41,832

13,280

34,302

38,378

28

207

69,345

22,356

54,089

55,476

29

161

35,903

10,948

30,159

34,522

30

186

50,220

15,810

40,678

44,839

Цель статистического исследования - анализ совокупности организаций по признакам Затраты на производство и Сумма ожидаемой прибыли, включая: