Смекни!
smekni.com

Статистическое изучение динамики социально-экономических явлений (стр. 4 из 5)

Для каждого месяца рассчитывается средняя величина уров­ня, например за три года (

), затем вычисляется среднемесяч­ный уровень для всего ряда
После чего определяется показа­тель сезонной волны — индекс сезонностиIs как процентное от­ношение средних для каждого месяца к общему среднемесячно­му уровню ряда, %:

Is =

100%.

где

средний уровень для каждого месяца (минимум за три года);

~ среднемесячный уровень для всего ряда.

Для наглядного представления сезонной волны исчисленные индексы сезонности изображают в виде графика.

Когда уровень проявляет тенденцию к росту или снижению, то отклонения от постоянного среднего уровня могут исказить сезонные колебания. В таких случаях фактические данные со­поставляются с выравненными, т. е. полученными аналитическим выравниванием.

Формулу для расчета индекса сезонности, %, в этом случае можно записать так:

где

u
- фактические и расчетные (выравненные) уровни одно­имённых внутригодовых периодов (соответственно); п — число лет.

Экстраполяция в рядах динамики и прогнозирование

Необходимым условием регулирования рыночных отноше­ний является составление надежных прогнозов развития соци­ально-экономических явлений.

Выявление и характеристика трендов и моделей взаимосвязи создают базу для прогнозирования, т. е. для определения ориен­тировочных размеров явлений в будущем. Для этого используют метод экстраполяции.

Экстраполяция это нахождение уровней за пре­делами изучаемого ряда, т. е. продление в будущее тенденции, наблюдавшейся в прошлом (перспективная экстраполяция). По­скольку в действительности тенденция развития не остается не­изменной, то данные, получаемые путем экстраполяции ряда, следует рассматривать как вероятностные оценки.

Экстраполяцию рядов динамики осуществляют различными способами, например, экстраполируют ряды динамики выравни­ванием по аналитическим формулам. Зная уравнение для теоре­тических уровней и подставляя в него значения t за пределами исследованного ряда, рассчитывают для t вероятностные

.

На практике результат экстраполяции прогнозируемых явле­ний обычно получают не точечными (дискретными), а интер­вальными оценками.

Для определения границ интервалов используют формулу:

tα— коэффициент доверия по распределению Стьюдента;

- остаточное среднее квадратическое от­клонение от тренда, скорректированное по числу степеней свободы (п - т);

п — число уровней ряда динамики;

т — число параметров адекватной модели тренда (для уравнения

прямой т = 2). Вероятностные границы интервала прогнозируемого явления:

Нужно иметь в виду, что экстраполяция в рядах динамики носит не только приближенный, но и условный характер.

Число степеней свободы — число элементов статистической совокупности, вариация которых свободна (неограничена).

Стьюдент — псевдоним английского математика и статистика Уильяма С. Госсета, разработавшего метод статистических оценок и проверки гипотез t-распределения, не являющегося нормальным.

РЕГРЕССИОННЫЙ АНАЛИЗ СВЯЗНЫХ ДИНАМИЧЕСКИХ РЯДОВ

Многомерные временные ряды, показывающие зависимость результативного признака от одного или нескольких факторных, называют связными рядами динамики. Применение методов наименьших квадратов для обработки рядов динамики не требу­ет предположений о законах распределе­ния исходных данных. Но при использовании метода наи­меньших квадратов для обработки связных рядов надо учи­тывать наличие автокорреляции (авторегрессии), которая не учи­тывалась при обработке одномерных рядов динамики, поскольку ее наличие способствовало более плотному и четкому выявле­нию тенденции развития рассматриваемого социально-экономи­ческого явления во времени.

В значительной части рядов динамики экономических процес­сов между уровнями суще­ствует взаимосвязь. Ее можно представить в виде корреляцион­ной зависимости между рядами у1, у2, у3,…уn и этим же рядом сдвинутым относительно первоначального положения на h мо­ментов времени y 1+ h, y 2+h, y3+h …yn+h. Временное смещение L называется сдвигом, а само явление взаимосвязи - автокорре­ляцией.

Автокорреляционная зависимость существенна между последующими и предшествующими уровнями ряда ди­намики.

При анализе нескольких взаимо­связанных рядов динамики важно установить наличие и сте­пень их автокорреляции(поскольку классические методы математической ста­тистики применимы лишь в случае независимости отдельных членов ряда между собой).

Различаются два вида автокорреляции:

1) автокорреляция в наблюдениях за одной или более перемен­ными;

2) автокорреляция ошибок или автокорреляция в отклонениях от тренда.

Наличие последней приводит к искажению величин средних квадратических ошибок коэффициентов регрессии, что затрудняет построение доверительных интервалов для коэффициентов рег­рессии, а также проверку их значимости.

Автокорреляцию измеряют при помощи нециклического коэффициента автокорреляции, который рассчитывается не только между соседними уровнями, т. е. сдвинутыми на один период, но и между сдвинутыми на любое число единиц времени (L). Этот сдвиг, именуемый временным лагом, опреде­ляет и порядок коэффициентов автокорреляции: первого поряд­ка (при L = 1), второго порядка (при L = 2) и т.д.

Формулу коэффициента автокорреляции можно записать следующим образом:

где

,
- среднее квадратическое отклонение рядов уt и уt+1соот­ветственно.

Если значение последнего уровня (уn) ряда мало отличается от первого (у1), то сдвинутый ряд не укорачивается, его можно условно дополнить, принимая уn = у1. Тогда уtt+1и

=
, поскольку рассчитываются они для одного и того же ряда. При такой замене, т. е. если
t
t+1 и
,формула коэффици­ента автокорреляции примет вид:

Если ряд динамики состоит из уровней, среднее значение вторых равно нулю (

= 0), то выражение yпрощается:

.

Для суждения о наличии или отсутствии автокорреляции в исследуемом ряду фактическое значение коэффициентов автокор­реляции сопоставляется с табличным (критическим) для 5%-ного или 1%-ного уровня значимости (вероятности допустить ошибку при принятии нулевой гипотезы о независимости уровней ряда).

(Одна из специальных таблиц, в которой определена критическая область проверяемой гипотезы (об отсутствии автокорреляции), составленная Р. Андерсеном в 1942 г., приведена в приложении 12.)

Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята. Когда же фактическое значение боль­ше табличного, можно сделать вывод о наличии автокорреляции в ряду динамики.

Для уменьшения автокорреляции применяют различные мето­ды. Bсе они преследуют цель исключения основной тенден­ции (тренда) из первоначальных данных.

Самым распространенным примером выявления наличия автокорреляции в отклонениях от тренда или от регрессионной модели является использование критерия Дарбина - Уотсона, который рассчитывается по формуле

где еt=уt -

.

Теоретическое основание применения этого критерия обуслов­лено тем, что в динамических рядах как сами наблюдения, так и отклонения от них распределяются в хронологическом по­рядке.