Смекни!
smekni.com

Понятие статистики 2 (стр. 3 из 7)

где

YА – показатель, характеризующий объект А

YБ – показатель, характеризующий объект Б

7. Относительные показатели интенсивности (ОПИ) характеризуют степень распределения или развития данного явления в той или иной среде. Это отношение абсолютного уровня одного показателя, свойственного изучаемой среде, к другому абсолютному показателю, также присущему данной среде, и, как правило, являющемуся для первого показателя факторным признаком.

Разновидностью относительных показателей интенсивности являются относительные показатели уровня экономического развития, характеризующие производство продукции в расчете на душу населения.


Тема № 4

СРЕДНИЕ ВЕЛИЧИНЫ

Сущность средней величины4-1Средние величины – это обобщающие показатели, в которых находят выражение действие общих условий, закономерность изучаемого явления. Сущность средней величины состоит в том, что она отражает общие черты, закономерности, тенденции, присущие данной совокупности, погашая влияние индивидуальных (случайных факторов) и поэтому является обобщающей характеристикой варьирующего признака качественно однородной совокупности. Средняя должна вычисляться с учетом экономического содержания определяемого показателя.Все виды средних величин, используемые в статистических исследованиях, подразделяются на 2 категории: степенные и структурные.
Степенные средние4-2В зависимости от вида представления исходных данных средние величины могут быть: · простыми· взвешенными

Правило мажорантности:

гарм<
геом<
арифм<
квадр

Применение средних степенных величин4-3

Вопрос о том, какой вид средней надо применить в каждом отдельном случае решается исходя из задачи исследования, материального содержания изучаемого явления и наличия исходной информации. При этом величины, представляющие собой числитель и знаменатель в формуле средней, должны иметь определенный логический смысл.

- Средняя арифметическаяпростаяприменяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Средняя арифметическая взвешенная применяется в случаях, когда данные представлены в виде рядов распределения или группировок.

- Когда статистическая информация не содержит частот по отдельным вариантам, а представлена как их произведение, применяется формула средней гармоническойвзвешенной. В том случае, когда объемы явлений (т.е. произведения) по каждому признаку равны, применяется средняя гармоническая простая.

- Средняя геометрическая – это величина, используемая как средняя из отношений. Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел, т.е. когда индивидуальные значения признака – относительные величины. Например, средняя геометрическая используется при расчете среднегодовых темпов роста.

- Средняя квадратическая – используется при расчете показателей вариации признака, а также в технике

Некоторые свойства средней арифметической:4-4

1. Сумма отклонений индивидуальных значений признака от их средней величины равна нулю.

2. Сумма квадратов отклонений индивидуальных значений признака от их средней величины есть величина минимальная.

, где А=
(т.е. А
)

3. Если все частоты разделить на одно и то же число, средняя арифметическая останется без изменений. Следствие: для расчета средней арифметической можно воспользоваться не только значениями частот, но и значениями частостей:

, или
т.к.
=1

4-5

Структурные средние: Мода

Мода – величина признака, наиболее часто повторяющаяся в изучаемой совокупности. Мода отражает типичный, наиболее распространенный вариант значения признака.

В дискретном ряду распределения мода – это варианта, которой соответствует наибольшая частота.

В интервальном ряду распределения сначала определяют модальный интервал (т.е. интервал, содержащий моду), которому соответствует наибольшая частота. Конкретное значение моды определяется формулой:

xMo – начальное значение модального интервала

iMo – величина модального интервала

fMo – частота модального интервала

fMo-1– частота интервала, предшествующего модальному

fMo+1 – частота интервала, следующего за модальным

При этом мода будет несколько неопределенной, т.к. ее значение будет зависеть от величины групп, точного положения границ групп.

Структурные средние:Медиана4-6

Медиана – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения, не большие, чем средний вариант, а другая – не меньшие.

Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины:

∑ |х-Ме| < ∑ |х-A| , где А=Ме

(т.е. А

Ме)

В ранжированном ряду с нечетным числом членов медиана - это варианта, расположенная в центре ряда. В ранжированном ряду с четным числом членов за медиану условно принимают среднюю арифметическую из двух вариант, расположенных в центре ряда.

В дискретном ряду распределения медиана рассчитывается с помощью накопленных частот: медианой является варианта, которой соответствует накопленная частота, впервые превысившая половину общей суммы частот.

В интервальном ряду распределения с помощью накопленных частот определяют медианный интервал (т.е. интервал, содержащий медиану), которому соответствует накопленная частота, впервые превысившая половину общей суммы частот. Затем конкретное значение медианы рассчитывают по формуле

,

где

хМе - начальное значение медианного интервала

iMe - величина медианного интервала

SMe-1сумма накопленных частот, предшествующих медианному интервалу

fMe – частота медианного интервала

Графическое определение моды и медианы4-7

Мода определяется по полигону или гистограмме распределения. В первом случае мода соответствует наибольшей ординате. Во втором – правую вершину модального прямоугольника соединяют с правым углом предыдущего прямоугольника, а левую вершину – с левым углом последующего прямоугольника. Абсцисса точки пересечения – этих прямых будет модой распределения.

Медиана определяется по кумуляте (рис.3). Для ее определения высоту наибольшей ординаты, которая соответствует общей численности совокупности, делят пополам. Через полученную точку проводят прямую, параллельную оси абсцисс, до пересечения ее с кумулятой. Абсцисса точки пересечения является медианой.

Тема № 5

ПОКАЗАТЕЛИ ВАРИАЦИИ

Виды показателей вариации5-1

Различие индивидуальных значений признака внутри изучаемой совокупности называется вариацией признака.

Показатели вариации характеризуют колеблемость отдельных значений, степень их близости к средней.

Показатель Простые Взвешенные
Абсолютные Размах вариации R = xmax - xmin
Среднее линейное отклонение
Дисперсия
Среднеквадратическое отклонение
Относительные Коэф-т осцилляции
Коэф-т линейной вариации
Коэф-т вариации

Если

>33%, то это говорит о том, что колеблемость признака в совокупности значительна, совокупность неоднородна, а средняя не является представительной.