Смекни!
smekni.com

Контрольные работы по Ботанике (стр. 3 из 4)

Анализ почвенного раствора или водной вытяжки дает определенное представление о наличии доступных элементов питания для растений на данной почве.

Однако они являются приближенными, поскольку корни различных растений обладают растворяющей способностью.

Индикатором плодородия почвы служит само растение. Во многих случаях при недостатке элементов минерального питания на растениях появляются характерные симптомы. В ряде случаев эти признаки голодания могут помочь установить функции данного элемента, а также необходимость его дополнительного внесения в почву. Симптомы голодания зависят также от способности передвижения данного элемента питания по растению. Соединение таких элементов, как N, P, S, K, Mgи некоторые другие, легко передвигаются, и растение способно к их вторичному использованию. В случае недостатка какого-либо из этих элементов они передвигаются из более старых к более молодым органам. В силу этого симптома голодания проявляются в первую очередь на старых листьях. Вместе с тем такие элементы и их соединения, как Са, Fe, B, Zn плохо передвигаются по растению. Эти элементы не способны ко вторичному использованию (реутолизации). Симптомы голодания проявляются в отношении этих элементов в первую очередь на самых молодых листьях и органах.

Внешние признаки голодания в отношении отдельных элементов проявляются следующим образом.

Азот. Ярким признаком недостатка азота является пожелтение листьев, связанное с недостатком хлорофилла. У некоторых растений наблюдается усиленный синтез антоциана и в связи с этим появление красноватого оттенка черешков и жилок листьев. Листья преждевременно опадают.

Фосфор. При фосфорном голодании на листьях, незрелых плодах появляются мертвые некротические пятна. Окраска листьев становится голубовато-зеленая или темно-зеленая. Стебли имеют слаборазвитую проводящую систему.

Калий. При недостатке калия на листьях появляются желтые пятна. Некротические участки, края и кончики листьев часто скручиваются.

Магний. Поскольку магний входит в состав хлорофилла, то первым признаком голодания является интенсивное пожелтение паренхимы листа (особенно между жилками).

Сера. Признаки серного голодания очень близки к тем, которые наблюдаются при недостатке азота. Листья желтеют, появляется антоциановая окраска. Однако эти признаки прежде всего на молодых листьях.

Кальций. При недостатке кальция повреждаются и отмирают меристематические зоны стебля, корня и листьев. В свою очередь это тормозит процессы роста.

Железо. Недостаток железа вызывает хлороз листьев, в первую очередь молодых, хлороз проявляется между жилками листа.

Марганец. При недостатке марганца на листьях появляются желтые и некротические пятна. Особенно чувствительны к недостатку марганца хлоропласты.

Медь. При недостатке меди белеют и отмирают кончики листьев, затем хлорофилл разрушается по краям листовой пластинки. Листья теряют тургор, растение завядает, листья и плоды плодовых деревьев покрываются бурыми пятнами.

Цинк. Недостаток цинка приводит к уменьшению размера листьев и к изменению их формы, междоузлия укорачиваются, на листьях проявляется хлороз.

Бор. Первым симптомом при недостатке этого элемента является остановка роста побегов и корней, листья становятся толще, скручиваются, цветки не образуются, клетки плохо дифференцируются.

Молибден. При дефиците молибдена листья по краям приобретают серую, а затем коричневую окраску, теряют тургор, а затем отмирают (остаются живыми только жилки).

69. Условия и причины вымерзания растений. Морозоустойчивость.

Морозоустойчивость – способность растений переносить температуру ниже 0ºС. Разные растения переносят зимние условия, находясь в различном состоянии. У однолетних растений зимуют семена, нечувствительные к морозам, у многолетних – защищенные слоем земли и снега клубни, луковицы и корневища. У озимых растений и древесных пород ткани под действием отрицательных температур могут замерзнуть и даже промерзнуть насквозь, однако растения не погибают. Способность этих растений перезимовывать обусловливается их достаточно высокой морозоустойчивостью.

Поврежденные морозом растения имеют вид как бы обваренных, они утрачивают тургор, листья их буреют и засыхают. При оттаивании клубней картофеля или корнеплодов сахарной свеклы вода легко вытекает из тканей. Такое явление длительное время объясняли разрывом клеточных стенок под влиянием льда, образующегося в тканях растений. Однако установлено, что лед образуется главным образом в межклетниках и клеточные стенки остаются неповрежденными. Гибель растений под влиянием морозов обусловливается изменениями, происходящими в протопласте, его коагуляцией. Физико-химические преобразования в протопласте происходят вследствие оттягивания воды образующимися в межклетниках в межклетниках кристаллами. Кроме того, протопласт подвергается сжатию со стороны растущих в межклетниках кристаллов. В результате наступает необратимая денатурация коллоидов протопласта клеток и отмирание тканей. Если льда образуется немного, то после оттаивания растение сможет остаться живым. Так, в листьях капусты, выдержанных при температуре минус 5-6ºС, образуется некоторое количество льда, воздух из межклетниках вытесняется, и листья становятся прозрачными. Однако образование льда в межклетниках неопасно, и после оттаивания листья возвращаются в нормальное состояние.

Каждая клетка имеет свою границу обезвоживания и сжатия. Переход этих границ, а не только снижение температуры – причина гибели клеток. Такое явление следует рассматривать не как непосредственное влияние холода на протопласт, а как действие, вызывающие обезвоживание протопласта вследствие вымораживания воды. Убедительным доказательством этого служит состояние переохлаждения (без образования льда), которое растения переносят без вреда; при тех же температурах, но с образованием льда в тканях растения гибнут. Не все растения одинаково реагируют на образование льда в тканях. Например, клубни картофеля, георгина погибают сразу; капуста, лук переносят умеренное промораживание; растения северных широт, озимые злаки (рожь, пшеница) выдерживают понижение температур до – 15 - 20ºС. Еще более выносливы зимующие почки лиственных и иглы хвойных деревьев. Нечувствительность к морозам достигается физико-химическими изменениями в клетках. В зимующих листьях и других частях растений накапливается много сахара, а крахмала в них почти нет. Сахар защищает белковые соединения от коагуляции при вымораживании, и поэтому его можно назвать защитным веществом. При достаточном количестве сахара в клетках повышаются водоудерживающие силы коллоидов протопласта, увеличивается количество прочносвязанной и уменьшается содержание свободной воды. Связанная с коллоидами вода при действии низких температур не превращается в лед. У ряда древесных пород в результате преобразования углеводов в коровой паренхиме накапливаются жиры и липоиды, которые не замерзают и проявляют защитное действие в зимний период. Кроме того, белковые вещества, частично гидролизуясь, переходят из менее устойчивой в более устойчивую форму азотосодержащих веществ – аминокислоты, которые при замерзании в меньшей мере подвергаются денатурации.

Современное учение о морозоустойчивости растений основано на том, что это свойство формируется в процессе онтогенеза под влиянием условий внешней среды в соответствии с генотипом, связано с явлением покоя и не является постоянным. У вегетирующих растений легко вымерзают растущие и закончившие рост растения. Выносливость растений к низким температурам в этот период незначительная. Степень морозоустойчивости клеток во много зависит от состояния плазмолеммы, обмена веществ, образования сложных органических соединений и массы цитоплазмы. В клетках внутренние слои цитоплазмы повреждаются раньше, чем плазмалемма, которая способна к быстрому новообразованию за счет молекул остальной массы цитоплазмы. Недостаточно закаленные клетки не могут быстро восстанавливать плазмалемму. На степень морозоустойчивости растений большое влияние оказывают сахара, регуляторы роста и другие вещества, образующиеся в клетках.

И. И. Туманов разработал теорию закаливания растений, повышающего их устойчивость к действию низких температур. Сущность ее заключается в том, что у растений под влиянием низких положительных температур накапливаются сахара и другие соединения – первая фаза закаливания. Дальнейшее повышение морозоустойчивости происходит уже при отрицательных температурах, но не повреждающих клетки, - вторая фаза закаливания. Она идет сразу же после первой при температуре немного ниже 0ºС. В этой фазе наблюдается частичная потеря воды клетками. Под действием сахаров, накопившихся в клетках, изменяются биоколлоиды и возрастает относительное количество коллоидно-связанной воды. Такие изменения придают биоколлоидам устойчивость к низким температурам.

У озимых злаков, не имеющих периода покоя в первой фазе закаливания при относительно низкой температуре (до 10º) и солнечной погоде накапливаются углеводы. Если осенью погода ясная и прохладная, озимые хлеба хорошо перезимовывают, так как первая фаза закаливания у них происходит в благоприятных условиях. При закаливании озимых растений свет необходим не только для накопления в клетках защитных веществ в процессе фотосинтеза, но и для поддержания ультраструктуры протопласта и ростовых процессов. Растения озимой пшеницы можно закаливать и в темноте при 2ºС, если их корни или узлы кущения погрузить в раствор сахарозы. Такие растения выдерживают морозы до 20ºС.

Обнаружено, что в период закаливания растений высокоморозоустойчивого сорта озимой пшеницы при температуре, близкой к 0ºС, количество сахаров в хлоропластах листьев увеличивалось в 2,5 раза. Вместе с тем в пересчете на белок в хлоропластах их накапливается меньше, чем в целом листе, так как значительная часть сахаров локализуется в клеточном соке, что, по-видимому, предотвращает образование льда в вакуолях. Однако наблюдения за динамикой накопления сахаров показали, что во время закаливания содержание их в хлоропластах в пересчете на белок возрастает в 3 раза, а в листьях – лишь в 1,5 раза. В хлоропластах содержатся те же формы сахаров, что и в листьях. Повышение содержания сахаров в хлоропластах в значительной мере зависит от соотношения ряда физиологических процессов, протекающих при температурах, близких к 0ºС. Так, с понижением температуры при закаливании растений интенсивность дыхания снижается сильнее, чем фотосинтез, в результате чего наблюдается задержка ростовых процессов. Повышение содержания сахаров в хлоропластах коррелирует с морозоустойчивостью растений. Следовательно, сахара оказывают стабилизирующие действие на клеточные структуры.