ДНК – высокомолекулярный полимер, состоящий из четырех нуклеотидов. Нуклеотиды ДНК включают пуриновые (аденин, гуанин) и пиримидиновые (цитозин, тимин) азотистые основания, сахар – дезоксирибозу и остатки фосфорной кислоты. Молекула ДНК представляет собой двойную спираль закрученных полимерных цепей, в каждой из которых нуклеотиды ковалентно связаны через остаток фосфорной кислоты с сахаром (десоксирибоза). Между собой две полинуклеотидные цепи взаимодействуют водородными связями, возникающими междуповернытыми внутрь спирали пуриновыми (аденин, гуанин) и пиримидиновыми (цитозин, тимин) основаниями.
При взаимодействии азотистых оснований аденин всегда взаимодействует с тимином, а гуанин с цитозином. Таким образом, возможны четыре варианта пар оснований: А-Т, Т-А, Г-У, У-Г. это явление называется комплементарностью и лежит в основе воспроизводства самой ДНК, синтеза, РНК и синтеза белков в клетке.
Молекула ДНК удваивается путем репликации каждой из двух ее цепей. Поэтому каждая двойная спираль молекулы ДНК состоит из «старой» и «новой» полинуклеотидных цепей.
Все РНК также построены из нуклеотидов четырех оснований: аденина и гуанина, цитозина и урацила.
Урацил заменяет в РНК тимин ДНК. В качестве пентозы используется рибоза. Размеры РНК разнообразны. Матричная РНК имеет от нескольких тысяч до десятков тысяч нуклеотидов и составляет до 3% суммарной РНК клетки.
42. Транспирация как физиологический процесс. Факторы, определяющие величину транспирации.
Транспирация – это физиологический процесс испарения воды растением. Количество воды, которое испаряет растение, во многом превосходит объем содержания в нем воды. Экономный расход воды составляет одну из важнейших проблем для сельскохозяйственного производства. К.А. Тимирязев называл транспирацию необходимым физиологическим злом.
Если мы будем выращивать растения в условиях высокой влажности воздуха, но транспирация будет идти со значительно меньшей интенсивностью. Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, транспирация меньше. Вместе с тем транспирация необходима организму:
1. транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Температура транспирирующего листа на 5-7 градусов ниже температуры окружающего воздуха;
2. при высокой температуре разрушаются хлоропласты и угнетается процесс фотосинтеза (оптимальная температура для фотосинтеза 30-35ºС);
3. транспирация создает непрерывный ток воды из корневой системы к листьям и связывает все органы растения в единое целое;
4. с транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом интенсивнее транспирация, тем быстрее идет процесс.
Транспирацию можно охарактеризовать следующими показателями: интенсивность транспирации, транспирационный коэффициент, продуктивность транспирации, относительная транспирация.
Интенсивность транспирации – это количество воды, испаряемой растением с единицы площади листьев в единицу времени. Эта величина колеблется от 0,1 до 1,5 г/дм /ч.
Транспирационный эффект – показывает, сколько единиц воды необходимо транспирировать растению, чтобы создать единицу сухого вещества. Транспирационный коэффициент зависит от вида растений, ярусности листьев, условий внешней среды. На величину транспирационного коэффициента оказывает влияние минеральное питание.
Продуктивность транспирации – это количество сухого вещества, накопленного растением при транспирации 1 литра воды. Этот показатель колеблется от 1 до 8 г.
Относительная транспирация – отношение воды, транспирируемое листом, к воде, испаряемой со свободной водной поверхности.
Регулирование устьичной транспирации – осуществляется открытием или закрытием устьиц. Их движение обусловлено различными факторами. Как мы уже отмечали, основным, обусловливающим движением устьиц является содержание воды в замыкающих клетках (изменение тургора). Различают гидропассивное и гидроактивное открытие и закрытие устьиц.
Гидропассивная реакция – это закрытие устьичных щелей, вызванное тем, что окружающие паренхимные клетки, переполненные водой, механически сдавливают замыкающие клетки. В результате сдавливания устьица не могут открыться. Гидропассивное движение обычно наблюдается после сильных поливов и может служить причиной торможения процесса фотосинтеза, а также скажется на тех процессах, которые связаны с током воды по растению. Гидроактивная реакция открывания и закрывания – это движение замыкающих клеток, вызванное применением содержания воды. Это связано с изменением концентрации осмотически активных веществ в процессе фотосинтеза, в замыкающих клетках.
В последнее время появились сведения о регулировании движения устьиц АБК (абсцизовой кислотой). АБК тормозит образование ферментов, участвующих в гидролизе крахмала, поступление калия.
Транспирация растения зависит не только от степени открытия устьиц, но и от внешних условий. Внешние условия влияют и на степень открытия устьиц, и на процесс транспирации. Зависимость транспирации от условий среды подчиняется уравнению Дальтона:
Где V – интенсивность транспирации количества воды, испарившейся с единицы поверхности;
К – коэффициент диффузии;
F – упругость паров воды, насыщающих данное пространство;
f – упругость паров воды в окружающем пространстве при температуре испаряющей поверхности;
Р – атмосферное давление в момент опыта.
Из приведенного уравнения видно, что прежде всего испарение пропорционально разности (F-f), т.е. ненасыщенности атмосферы парами воды, или дефициту влажности. Чем больше дефицит влажности воздуха, тем ниже его водный потенциал, тем быстрее идет испарение. Однако следует учесть, что данное явление смягчается в силу устьичного и внеустьичного регулирования транспирации, чем это следовало ожидать согласно формуле Дельтона.
Следующим фактором, влияющим на транспирацию, является температура. С повышением температуры возрастает.
Особое влияние на транспирацию оказывает свет. Его влияние проявляется в следующем: на свету зеленые листья поглощают определенные участки спектра, повышается температура листа и, следовательно, усиливается процесс транспирации. Действие света на транспирацию усиливается тем больше, чем выше содержание хлорофилла. На свету увеличивается проницаемость цитоплазмы.
Почва и растение образуют единую водную систему, поэтому уменьшение содержание воды в почве снижает содержание воды в растении и, как следствие, транспирацию.
Из внешних факторов существенное влияние на процесс транспирации оказывает ветер – движение атмосферы. Ветер перемещает более насыщенный парами воды слой воздуха с поверхности листа в более дальние слои. В силу этого усиливается прежде всего кутикулярная транспирация. Более сильное влияние на транспирацию оказывает ветер у тех растений, которые имеют тонкую или поврежденную кутикулу.
Интенсивность транспирации зависит и от ряда внутренних факторов, и прежде всего от содержания воды в листьях. Всякое уменьшение содержания воды в листьях уменьшает транспирацию. Транспирация зависит и от концентрации клеточного сока. Чем концентрированнее клеточный сок, тем слабее транспирация. Интенсивность транспирации зависит от эластичности клеточных стенок.
С увеличением возраста растений интенсивность транспирации снижается. На процесс транспирации влияет смена дня и ночи. В ночной период суток транспирация резко сокращается из-за снижения температуры, повышения влажности воздуха, отсутствия света. Исследования показывают, что ночная транспирация составляет 3-5% от дневной.
Основной ход транспирации зависит от соотношения метеорологических факторов. Максимум транспирации наблюдается в середине дня.
Транспирация зависит от величины листовой поверхности, чем она (листовая поверхность) больше, тем сильнее процесс транспирации.
Контрольная работа №2
10. Физиологические нарушения при недостатке отдельных элементов питания.
Корневое питание – это процесс поглощения и усвоения ими химических элементов из окружающей среды. Чтобы выяснить какие элементы питания необходимы растениям, их выращивают в условиях вегетационного опыта, на специально составленных питательных смесях и наблюдают за ростом и развитием.
Различают следующие методы искусственных культур: водных, песчаных и почвенных. Метод водных культур впервые был разработан немецким физиологом Н. Кнопом и Ю. Саксом в 70-х годах 19 столетия.
В состав питательных смесей входят такие необходимые для растений макроэлементы, как азот, фосфор, калий, кальций, магний и сера. Исключая из нормальной смеси некоторые элементы, установили, что нормальное развитие растений возможно только при наличии в питательном растворе следующих элементов: неметаллов –азота, фосфора, серы и бора; металлов – калия, магния, кальция, железа, меди, цинка, марганца, кобальта, молибдена.
Для нормального развития растений необходимы также микро- и ультрамикроэлемнты и нельзя заменить один другим.
Буферные свойства питательных смесей определяют по наличию основных и кислых групп. Чем выше буферность смеси, тем меньше изменяется ее рН при неэквивалентном поглощении ионов корнями растений. В растительном организме важную роль в качестве буферов играют органические кислоты (винная, яблочная, лимонная, щавелевая) и их соли.