Смекни!
smekni.com

Экономико-статистический анализ эффективности производства зерна на примере группы районов (стр. 5 из 6)

Рентабельность продаж в первой группе выше чем во второй на 45%.

Рассмотрим влияние факторов:

Рентабельность продаж меньше в первой группе в сравнении со второй за счет уменьшения прибыли на 91,9%. Обратная зависимость между полной себестоимостью реализованной продукции и рентабельностью (снижение затрат на 94,4%).

Аналогично проведем анализ третьей группы в сравнении с типичной:

Рентабельность продаж в третьей группе районов ниже, чем во второй, типичной, группе на 31%.

Рентабельность продаж меньше в третьей группе в сравнении со второй за счет уменьшения прибыли на 80%. Обратная зависимость между полной себестоимостью реализованной продукции и рентабельностью (снижение затрат на 71%).


8. Корреляционно-регресионный анализ показателей эффективности интенсификации производства

Корреляционный методимеет своей задачей количественное оп­ределение тесноты связи между двумя признаками (при парной свя­зи) и между результативным и множеством факторных признаков (при многофакторной связи).

Корреляция - это статистическая зависимость между случайны­ми величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к из­менению математического ожидания другой.

В статистике различаются следующие варианты зависимостей:

• парная корреляция - связь между двумя признаками (результа­тивным и факторным или двумя факторными);

• частная корреляция - зависимость между результативным и од­ним факторным признаками при фиксированном значении дру­гих факторных признаков;

• множественная корреляция - зависимость результативного и двух или более факторных признаков, включенных в исследование.

Корреляционный и регрессионный анализ как общее понятие вклю­чает в себя измерение тесноты, направления связи и установление ана­литического выражения (формы) связи (регрессионный анализ).

Регрессионный метод заключается в определении аналитическо­го выражения связи, в котором изменение одной величины (называе­мой зависимой или результативным признаком) обусловлено влияни­ем одной или нескольких независимых величин (факторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значе­ния. (Регрессия может быть однофакторной (парной) и многофактор­ной (множественной).


Таблица 12

Исходные и расчетные данные для проведения корреляционно-регрессионного анализа

№ п/п Районы Урожайность, ц/га Y Внесено удобр. на 1 га посева, ц.д.в. Х1 Затраты чел-ч на 1 га, Х2 Y*X1 Y*X2 X12 X22 Y2 X1*X2
1 Черемховский 2,85 13,31 10,9 37,93 31,065 177,156 118,81 8,1225 145,079
2 Чунский 9,74 38,35 10,18 373,53 99,1532 1470,72 103,632 94,8676 390,403
3 Куйтунский 15,71 111,59 9,61 1753,08 150,9731 12452,3 92,3521 246,804 1072,38
4 Балаганский 10,13 72,74 36,82 736,86 372,9866 5291,11 1355,71 102,617 2678,29
5 Зиминский 19,47 199,03 10,15 3875,11 197,6205 39612,9 103,023 379,081 2020,15
6 Усть-Илимский 11,83 65,42 9,3 773,92 110,019 4279,78 86,49 139,949 608,406
7 Усольский 26,11 278,43 13,6 7269,81 355,096 77523,3 184,96 681,732 3786,65
8 Качугский 8,48 9,79 20,72 83,02 175,7056 95,8441 429,318 71,9104 202,849
9 Киренский 12,83 8,16 34,98 104,69 448,7934 66,5856 1223,6 164,609 285,437
10 Иркутский 14,56 177,72 14,44 2587,60 210,2464 31584,4 208,514 211,994 2566,28
11 Усть-Кутский 6,59 - 17,92 - 118,0928 - 321,126 43,4281 -
Итог 18,13 177,83 14,06 3224,06 254,9078 31623,5 197,684 328,697 2500,29

Проанализируем полученные данные в приложении:

Уравнение связи имеет вид:

Yx=5,240+0,065*X1+0,091*X2

Это означает, что с увеличением затрат и количества внесенных удобрений урожайность увеличивается на 0,091 и 0,065 соответственно.

· Множественный коэффициент корреляции показывает сильную связь между результатом и факторами, включенными в анализ (Ryx1x2= 0,9128). Чтобы определить степень тесноты связи воспользуемся шкалой Чеддока, т.к. коэффициент корреляции выше 0,7 это значит, что связь сильная, линейная, прямая.

83,3% вариации урожайности обусловлено изменением затратами чел-ч на 1 га и количеством внесенных удобрений на 1 га посева (R2 =0,8332)

Анализ следует завершить «Выводом остатка» (приложение табл. 4)


Выводы и предложения

Проанализировав курсовую можно сделать следующие выводы:

Максимальный удельный вес площади зерновых в площади посевов в Зиминском районе – 85,02 %, а минимальный в Усть-Кутском – 31,81 %. Средне значение по 11 районам – 65,59 %.

По удельному весу денежной выручки от реализации зерна в стоимости продукции можно сказать, что больше всех развито производство зерна в Чунском районе, также хорошо развито в Куйтунском, Балаганском, Зиминском и Качугском районах.

При построении аналитической группировки с неравными интервалами по урожайности зерновых можно выделить типичную группу, в нашем случае типичной группой является вторая группа, так как она имеет среднюю урожайность ближе к урожайности всей совокупности. Данные группировки оформляются в виде таблицы 8.

Наблюдается следующая закономерность: с увеличением материально денежных затрат на гектар посева урожайность зерновых культур увеличивается.

Аналитическая группировка по себестоимости. Типичной группой является вторая. В первой и третьей группах районов вложенные затраты не окупились выходом продукции поэтому себестоимость зерна увеличилась.

Индексный анализ показал, что прибыль в первой и третьей группах снизилась, по сравнению с типичной, соответственно произошло снижение рентабельности.

Для более эффективного производства зерна можно сделать следующие предложения: эффективно использовать земельные, трудовые и материальные ресурсы районов; увеличить объемы производства, улучшить качество продукции; снизить материально-денежные затраты на производство сельскохозяйственной продукции.

Приложение

Множественная корреляция

Таблица 1

Исходные данные для корреляционного анализа

2 Исходные данные для корреляционного анализа
3 Районы Урожайность ц/га Y Внесено удобрений на 1 га посева, ц.д.в. X1 Затраты чел-ч на 1 га, X2
4 1) Черемховский 2,85 13,31 10,9
5 2) Чунский 9,74 38,35 10,18
6 3) Куйтунский 15,71 111,59 9,61
7 4)Балаганский 10,13 72,74 36,82
8 5) Зиминский 19,47 199,03 10,15
9 6) Усть-Илимский 11,83 65,42 9,3
10 7) Усольский 26,11 278,43 13,6
11 8) Качугский 8,48 9,79 20,72
12 9) Киренский 12,83 8,16 34,98
13 10) Иркутский 14,56 177,72 14,44
14 11) Усть-Кутский 6,59 17,92
Вывод итогов
Столбец 1 Столбец 2 Столбец 3
Столбец 1 1
Столбец 2 0,892122272 1
Столбец 3 -0,160118325 -0,3281378 1

Множественная регрессия

Таблица 2

Исходные данные для регрессионного анализа

2 Исходные данные для корреляционного анализа
3 Районы Урожайность ц/га Y Внесено удобрений на 1 га посева, ц.д.в. X1 Затраты чел-ч на 1 га, X2
4 1) Черемховский 2,85 13,31 10,9
5 2) Чунский 9,74 38,35 10,18
6 3) Куйтунский 15,71 111,59 9,61
7 4)Балаганский 10,13 72,74 36,82
8 5) Зиминский 19,47 199,03 10,15
9 6) Усть-Илимский 11,83 65,42 9,3
10 7) Усольский 26,11 278,43 13,6
11 8) Качугский 8,48 9,79 20,72
12 9) Киренский 12,83 8,16 34,98
13 10) Иркутский 14,56 177,72 14,44
14 11) Усть-Кутский 6,59 0 17,92

Таблица 3

ВЫВОД ИТОГОВ
Регрессионная статистика
Множественный R 0,912805952
R-квадрат 0,833214705
Нормированный R-квадрат 0,791518382
Стандартная ошибка 2,91045176
Наблюдения 11
Дисперсионный анализ
df SS MS F Значимость F
Регрессия 2 338,5399826 169,2699913 19,98292974 0,000773804
Остаток 8 67,76583556 8,470729445
Итого 10 406,3058182
Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
Y-пересечение 5,240437082 2,325948867 2,253031937 0,054309739 -0,123210619 10,60408478 -0,123210619 10,60408478
Переменная X 1 0,065099591 0,010459724 6,223834558 0,000252786 0,040979425 0,089219758 0,040979425 0,089219758
Переменная X 2 0,091257747 0,097451716 0,93644064 0,376449903 -0,133466312 0,315981806 -0,133466312 0,315981806

Таблица 4