Смекни!
smekni.com

Вплив опромінення електронами з Е 1 2 МеВ на електричні фотоелектричній оптичні властивості мон (стр. 1 из 3)

Вплив опромінення електронами з Е=1,2 МеВ на електричні, фотоелектричні

й оптичні властивості монокристалів сульфіду кадмію, легованого атомами

індію

Сульфід кадмію належить до перспективних напівпровідникових матеріалів, які використовуються в електронній, оптоелектронній і лазерній техніці. Фізичні властивості кристалів CdS суттєво залежать від їхнього дефектного стану. Крім того, внаслідок ряду особливостей, все частіше ці сполуки розглядають як модельний матеріал для вивчення типу і структурних особливостей дефектів у широкозонних напівпровідниках групи АІІВІV. Тому великий інтерес викликає дослідження впливу власних дефектів решітки і їх комплексів (які включають також легуючі домішки) на фізичні властивості CdS-монокристалів. Зручним методом зміни дефектного стану зразків є опромінення їх частинками високих енергій.

У поданій статті досліджувався вплив опромінення швидкими електронами на електричні, фотоелектричні й оптичні властивості легованих індієм монокристалів CdS. Монокристали вирощувалися в інституті монокристалів (м. Харків) із розплаву спеціально очищеного порошку CdS в атмосфері інертного газу під тиском 1,86×107 Па. Легування індієм здійснювалося у процесі вирощування. Згідно з паспортними даними, концентрація індію в різних зразках становила NIn»1018см-3, NIn»1019см-3 і NIn»1020см-3. Опромінення зразків електронами з енергією 1,2 МеВ відбувалося на лінійному прискорювачі. Кристали при опроміненні охолоджувалися парами рідкого азоту і їхня температура при опроміненні не піднімалася вище 290 К. Доза опромінення становила Ф»2×1017см-2.

Спектри поглинання (СП) і фотолюмінесценції (ФЛ) вимірювалися стандартним методом на змінному сигналі з використанням синхронного детектування. Як аналізу- ючі прилади використовувалися спектрографи ИСП-51 і ИКС-12. Вимірювання спектрального розподілу фотопровідності (ФП) й оптичного гашення фотопровідності (ОГФ) здійснювалися стандартним методом на постійному сигналі.

Експериментальні результати

Особливістю легованих індієм монокристалів СdS є поява при кімнатній температурі додаткового домішкового поглинання з максимумом =525 нм. У легованих монокристалах з’являється також додаткова домішкова фотопровідність, максимум якої близький до максимуму додаткового поглинання 524 нм (рис. 1, крива 1, пік I). Зі зниженням температури максимуми домішкового поглинання і ФП виморожуються (рис. 1, крива 2). Зміщення піка власної фотопровідності II з максимумом 513 нм (Т=290 К) у короткохвильову область, при зниженні температури, до 490 нм (Т=80 К) добре узгоджується із зростанням ширини забороненої зони (Еg) монокристала CdS при його охолодженні.

Опромінення легованих кристалів електронами з Е=1,2 МеВ і дозою Ф=2×1017 см-2 призводить до зникнення домішкових максимумів поглинання і фотопровідності з 524 нм. Крім того, зростає фоточутливість в області власної фотопровідності (пік II) і зменшується в домішковій області з >550 нм, що особливо добре спостерігається при низьких температурах (рис. 1, криві 3 і 4).

Слід відмітити також, що електронне опромінення зразків дозою 2×1017см-2 супроводжується зменшенням майже на два порядки величини (в порівнянні з неопроміненими кристалами) темнової електропровідності. До опромінення в досліджуваних зразках спостерігалося добре відоме в літературі невелике (до 5 %) ОГФ з максимумами при (0,9-0,95) мкм і 1,4 мкм (останній виморожується при зниженні температури), за яке відповідальні вакансії кадмію (VCd) [1, 2] (рис. 2а, крива 1).

Після опромінення структура кривих ОГФ кардинально змінилася (рис. 2а, криві 2 і 3). Перш за все зросла величина спектрального розподілу оптичного гашення фотопровідності. Змінилося положення максимумів смуг ОГФ (0,75 мкм і 1,03 мкм, рис. 2а, крива 2). Із зниженням температури максимум з 1,03 мкм виморожується, а максимум з зміщується в довгохвильову область до 0,82 мкм (рис. 2а, крива 3).

При записуванні спектрів фотолюмінесценції (ФЛ) легованих зразків з метою порівняня записувалися спектри нелегованих кристалів, вирощених у тих умовах, що й леговані зразки. Люмінесценція збуджувалася ультрафіолетовим випромінюванням (=365 нм) ртутної лампи ДРШ-250 на свіжо сколотих поверхнях кристала.

При кімнатній температурі максимум свічення нелегованих кристалів перебував у зеленій області з вершиною =510 нм, спостерігалося невелике свічення в червоній (з 700-710 нм) та інфрачервоній (з 1,03 мкм) областях спектра (рис. 3, крива 1). Введення домішки In викликає різке зменшення інтенсивності люмінесценції. Для кристалів з великою концентрацією In (NIn1019-1020см-3) домінуючою залишається зелена смуга свічення, але при цьому вона розширюється і її максимум зміщується на ~10 нм в короткохвильову сторону спектра, індентифікуються менш інтенсивні розмиті максимуми з 660 нм і 0,95 мкм (рис. 3, крива 2).


При температурі рідкого азоту спектри люмінесценції нелегованих зразків мали смуги екситонного випромінювання з мах=480 нм, зеленого випромінювання (з-люмінесценції) з добре розділеними фононними повтореннями і з положенням першого максимуму 514 нм, спостерігалася слабка оранжева люмінесценція (О-люмінесценція) з 604 нм. Інші смуги люмінесценції мали інтенсивність на межі чутливості реєструючих приладів (рис. 4, крива 1). У легованих зразках (NIn1018 см-3) реєструвалася тільки безструктурна розмита смуга зеленого випромінювання (рис. 4, крива 2). При збільшенні концентрації In (NIn1019 см-3) на фоні розмитої смуги зеленого випромінювання появляється максимум із »525 нм (рис. 4, крива 3).

Після опромінення легованих In монокристалів їхні спектри ФЛ у видимій області мають такі ж самі положення максимумів свічення, як і в нелегованих зразках, але при цьому інтенсивність випромінювання та її розподіл по максимумах відрізняється від такої в нелегованих кристалах. При кімнатній температурі в опромінених CdS:In зразках розгоряється червона люмінесценція з 710 нм, зменшується інтенсивність з-люмінесценції з положенням максимуму 510 нм (рис. 3, крива 3). При азотній температурі у спектрах, опромінених CdS:In, домінуючою стає смуга оранжевої люмінесценції з 604 нм, смуга з-люмінесценції набуває структури, яка характерна для нелегованих кристалів із положенням першого максимуму 514 нм, з’являється смуга екситонної люмінесценції з 480 нм (рис. 4, крива 4).

В інфрачервоній області в опромінених CdS:In виникає нова смуга малоінтенсивної люмінесценції з 1,2 мкм, яка не ідентифікується в неопромінених кристалах.

Обговорення результатів експерименту

Як відомо, In, який належить до елементів ІІІ групи таблиці Мендєлєєва, при легуванні монокристалів CdS входить у решітку як домішка, що заміщує атоми Cd в катіонній підрешітці кристала, створюючи при цьому мілкі донорні рівні (InCd) [1]. Очевидно, саме з цими донорними рівнями зв’язані додаткові максимуми поглинання і фотопровідності (524 нм), які спостерігалися при кімнатній температурі в легованих In монокристалах CdS (рис. 1, пік І). Оцінена нами (за положенням домішкового максимуму ФП) енергія іонізації центра InCd, як виявилось, дорівнює Е=Ес-(0,06±0,02) еВ, що добре узгоджується з енергетичним положенням донора InCd, визначеним іншими авторами [1].

Додаткове білякрайове поглинання і максимум фотопровідності, які спостерігаються при кімнатній температурі, зумовлені фотозбудженням електронів із валентної зони на донорні центри InCd з подальшою їхньою термоіонізацією (при високих температурах) у зону провідності. Двосхідчасті переходи подібного типу часто спостерігаються в легованих широкозонних напівпровідниках АІІВ [3]. При зниженні температури внаслідок заповнення донорних центрів електронами і зменшення ймовірності їх термоіонізації в зону провідності, відбувається виморожування піків домішкового поглинання і фотопровідності.

Поява максимуму фотолюмінісценції з 525 нм при 77 К у зразках з великою концентрацією In, який накладається на безструктурну розмиту смугу з-люмінесценції (рис. 4, крива 3), очевидно, також пов’язана з центром InCd. Смуга ФЛ з 525 нм виникає внаслідок рекомбінації електронів, що містяться на заповнених при низьких температурах донорних центрах (пов’язаних з InCd), з дірками валентної зони. Підтвердженням сказаного є зростання інтенсивності смуги ФЛ з 525 нм при збільшенні концентрації In та її гашення при підвищенні температури (внаслідок зменшення заповнення центрів InCd електронами). Центри з подібними смугами люмінесценції спостерігались у кристалах CdS, легованих Li, який також утворює мілкі домішкові рівні в зоні [2].

Зменшення інтенсивності випромінювання у легованих кристалах, розмиття і втрата структури найбільш домінуючої з-люмінесценції, зміщення її максимуму в короткохвильову область спектра (при кімнатній температурі) і відсутність спектрів екситонної люмінесценції (рис. 3 і 4) свідчить про значну дефектність легованих зразків, особливо при високих концентраціях легуючої домішки (NIn=1019-1020 см-3).

Параметри елементарної комірки (визначені за допомогою рентгенівського дифрактометра HZG-4A) легованих кристалів відрізняються від параметрів нелегованих зразків (табл. 1.).

Таблиця 1

Параметри елементарної комірки CdS i CdS:In монокристалів (NIn»1019 см-3)

CdS

CdS:In

До опромінення

CdS:In

Після опромінення, Ф=2×1017 см-2

а, с, а, с, а, с,

4,1351

(4,1369)

6,7130

(6,7157)

4,1320 6,7100 4,1340 6,7125

У дужках подано табличні дані для найбільш чистих і структурно досконалих монокристалів CdS [3].