Смекни!
smekni.com

Проект определения конкурентоспособности и предельной цены грузоподъемного оборудования (стр. 16 из 19)


Тт = Т1 + Т2 + Т3 + Т4 + Т5 + Т6, (3.7)

где Т1 – время на транспортирование грузоподъемного крана с одного объекта на другой, в часах;

Т2 – время, необходимое для приведения грузоподъемного крана в рабочее состояние, в часах;

Т3 – время, необходимое для приведения грузоподъемного крана в транспортное состояние, в часах;

Т4 – время выдвижения стрелы, в часах;

Т5 – время сбора стрелы, в часах;

Т6 – время, необходимое для осуществления переездов внутри каждой объекта, в часах.

Время, необходимое для транспортирования крана на автомобильном ходу, в свою очередь, определяется по следующей формуле:

Т1 =

ґ N, (3.8)

где S – расстояние от одного обслуживаемого объекта до другого, км;

V – транспортная скорость крана, км/ч;

N – количество объектов, обслуживаемых одним краном за год.

Для специального короткобазового крана ККС‑55, транспортная скорость которого 40 км/ч, величина Т1 (рассчитанная по формуле 3.8) составляет 12.5 часов за год, для крана на специальном шасси автомобильного типа КС‑6473, транспортная скорость которого 70 км/ч, Т1 равно 7. 14 часов и, на конец, для автомобильного крана KR‑500S, транспортная скорость которого 80 км/ч, Т1 принимает значение 6.25 часов.

Время, необходимое для приведения крана в рабочее состояние, (Т2) для крана ККС‑55 равно 10 минут (что за год в среднем составляет 16.7 часов), а время приведения крана в транспортное состояние (Т3) – 8 минут (13.3 часа за год); для крана КС‑6473 Т2 и Т3 равно 15 минут (25 часов за год); для крана KR‑500S Т2 равно 16.7 часов, а Т3 равно 13.3 часа в год.

В результате проведенных исследований выявлено, что в 5% случаев при эксплуатации строительных грузоподъемных кранов на автомобильном ходу возникает необходимость применения удлинителя телескопической стрелы, а в 95% случаев его не используют. Поэтому время выдвижения стрелы (Т4) определяется по формуле:

Т4 = Т4удл + Т4безудл, (3.9)

где Т4удл - время, необходимое для присоединения удлинителя при выдвижении стрелы, ч;

Т4безудл – время, необходимое для выдвижения стрелы без присоединения удлинителя, ч.

Для крана ККС‑55 Т4удл составляет 0.025 часа на каждой стройке (при условии, что удлинитель присоединяется к стреле за 0.5 часа), что за год складывается в 2.5 часа; для кранов КС‑6473 и KR‑500S – 0.1 часа на каждой стройке (удлинитель присоединяется к стреле за 2 часа) и за год этот показатель принимает значение 10 часов. Т4безудл для всех трех кранов составляет 32 часа. Таким образом, время выдвижения стрелы, рассчитанное по формуле (3.9), для крана ККС‑55 равно 34.5 часа, для кранов КС‑6473 и KR‑500S – 42 часа.

Как свидетельствует статистика, существует необходимость переездов внутри стройки вместе с грузом в 10% случаев, а в 90% – без груза. Первое время для кранов ККС‑55 и КС‑6473 по времени составляет 10 часов, а для KR‑500S – 4 часа; второе время для всех трех кранов равно 10 часов. Тогда, время для переездов внутри стройки для кранов ККС‑55, КС‑6473 и KR‑500S принимает следующие величины: 20, 20 и 14 часов соответственно. Таким образом, на данном этапе можно рассчитать, сколько составляет время непосредственной работы каждой машины по следующей формуле:


Тр = Тк – (Тт + Тоб + Тв + Тор), (3.10)

Для крана ККС‑55 рабочее время составляет 4697. 5 часов, для крана КС‑6473 – 4019. 9 часов, для крана KR‑500S – 4836 часов (см. табл. 3.1).

Таблица 3.1 – Распределение календарного фонда времени кранового оборудования (на базе хронометражного наблюдения, проведенного на шахте «Краснолиманская» с 9 октября 2005 г. по 9 октября 2006 г.)

Показатель Марка грузоподъемного крана
ККС‑55 КС‑6473 KR‑500S
Календарный фонд времени 8760 8760 8760
Фонд рабочего времени 4697.5 4019.9 4836
Вспомогательные технологические операции:Транспортирование кранаПриведение крана в рабочее состояниеПриведение крана в транспортное состояниеПрисоединение удлинителя при выдвижении стрелыВыдвижение стрелы без присоединении удлинителяСбор стрелыПередвижение внутри стойки 12.516.713.32.53234.520 7.14252510324220 6.2513.313.310324214
Фонд времени на восстановление 307 307 300
Фонд времени на техническое обслуживание 720 720 720
Перерывы по организационным причинам и климатическим условиям 2904 2904 2904

Подводя итоги, можно рассчитать показатели надежности и свести их в единую таблицу, а также рассчитать эксплуатационную производительность для каждой из машин по формуле (3.6). Таким образом, для кранов ККС‑55, КС‑6473, KR‑500S эксплуатационная производительность принимает значения 58.98 т/ч, 46.68 т/ч и 57.8т/ч соответственно. Анализируя показатели надежности, сведенные в табл. 3.2 и 3.3,


Таблица 3.2 – Показатели надежности грузоподъемных кранов

Наименование фирмы Тип машины Расчетное время цикла, мин. Коэффициент технологического использования Коэффициент технического использования Комплексный показатель технического уровня
АО «НКМЗ» ККС‑55 15 0.973 0.825 0.054
ПО «Краян» КС‑6473 17 0.96 0.825 0.038
КАТО KR‑500S 14 0.973 0.83 0.058

Таблица 3.3 –Эксплуатационная производительность крана

Тип машины Расчетная эксплуатационная производительность, т/час
Кран короткобазовый ККС‑55 58.98
Кран на автомобильном ходу КС‑6473 46.6
Короткобазовый кран KR‑500S 57.8

можно сделать вывод, что при прочих равных условиях кран ККС‑55 имеет самую высокую эксплуатационную производительность за счет лучших грузовых характеристик в то время, как кран KR‑500S имеет выше показатели надежности, чем у ККС‑55 сравнительно на незначительную величину. Таким образом, кран ККС‑55 изготовлен на уровне запросов мирового рынка.

3.2 Разработка методики определения уровня предельной цены кранового оборудования

В настоящее время существует возможность выведения функциональной зависимости как цены от массы оборудования, так и последней от классификационных и функциональных показателей назначения. Поэтому на данном этапе исследования, проводимого на примере грузоподъемного оборудования (а именно, грузоподъемных кранов на автомобильном ходу), основной задачей является нахождение таких зависимостей для исследуемого класса машиностроительного оборудования.

Для нахождения существующих зависимостей в соответствие с алгоритмом необходимо прежде всего иметь информационную базу, содержащую данные о выборке однотипных машин, состоящей как из отечественных, так и зарубежных аналогов. Соответствующая выборка сведена в табл. 4.4 на основании статистической информации маркетинговой базы данных «WA‑2 регистр».

Для убеждения в существовании функциональной зависимости между ценой и массой грузоподъемных кранов на автомобильном ходу необходимо построить график (см. рис. 3.1). Кривую зависимости цены от массы для кранов малой грузоподъемности (до 30т) целесообразно описать уравнением, построенного на мультипликативной основе [47]:

Ц = К * М1.8. (3.11)

А кривую той же зависимости для машин большей грузоподъемности – уравнением:

Ц = К * М1.1, (3.12)

где Ц – цена крана, тыс. грн.;

К – коэффициент пропорциональности;

М – масса крана, кг.

Несовместимость кривых для кранов малой и большой грузоподъемности объясняется тем, что первые базируются на автомобильном шасси, а вторые – на специальном шасси.

Следующим шагом в расчете предельной цены является определение функциональной зависимости массы грузоподъемного крана от функциональных и классификационных показателей назначения. Так как для целей настоящей работы наиболее удобной является именно мультипликативная форма выражений, отличающаяся более строгой структурой, необходимо произвести построение в форме достоверной эмпирической формулы определения массы, то есть по формуле (2.36). Вследствие того, что, как известно, потребителя интересуют возможности, которые ему предоставляют ресурсы, реализованные в приобретаемом оборудовании, и совокупность таких возможностей характеризуется показателями назначения оборудования, а у кранового оборудования такими показателями является максимальная высота подъема груза и грузоподъемность, то формула (2.36) для грузоподъемных кранов принимает следующий вид: