Смекни!
smekni.com

Кормопроизводство (стр. 1 из 6)

Контрольная работа

по Кормопроизводству


1. Биология, развитие и требования кормовых культур к факторам жизни

У каждого растения в течение жизни происходит ряд закономерных изменений, свойственных данному биологическому виду. Совокупность таких генетически обусловленных физиолого-биологических и морфологических изменений, протекающих в организме растений, называется онтогенезом или жизненным циклом.

В жизненном цикле однолетних растений, как и у побегов двулетних и многолетних травянистых растений, установлены следующие 12 этапов органогенеза (Куперман, 1977).

I этап завершается прорастанием семян и появлением всходов. Для нормального прохождения этого этапа органогенеза из всего комплекса факторов жизни растений наибольшее значение имеют влага и тепло. Уровень влагообеспеченности и температурные условия для разных культур неодинаковы.

На II этапе органогенеза конус нарастания дифференцируется на зачаточные узлы и междоузлия стебля и зачаточные листья, т. е. в значительной мере предопределяется строение вегетативной сферы растений. В оптимальных условиях (наличие влаги, элементов питания, фотосинтетически активной солнечной радиации, тепла, воздуха) продолжительность II этапа органогенеза и соответственно количество образующихся узлов и междоузлий стебля, листьев и боковых побегов в пазухах листьев являются для данного вида (разновидности, сорта) величинами сравнительно постоянными.

На III этапе идут процессы формирования главной оси зачаточного соцветия и зачаточных кроющих листьев, брактей, прицветников и прицветничков. В благоприятных для роста сельскохозяйственных культур условиях (наличие влаги и элементов питания в почве, оптимальная температура, высокая относительная влажность воздуха, нормальный световой режим и др.) у растений в период прохождения III этапа заметно увеличивается число члеников лопастей соцветия, что обусловливает повышение продуктивности посевов.

IV этап характеризуется появлением на зачаточной оси соцветия конусов нарастания второго порядка (зачаточных лопастей или веточек соцветия) в пазухах брактей.

На V этапе органогенеза начинаются процессы образования и дифференциации цветков (закладка тычинок, пестика, покровных органов цветка). В конце этого этапа возникают археспориальные клетки (спорогенная ткань), наблюдается начало дифференциации тычиночного бугорка на тычиночную нить и пыльник.

Для VI этапа органогенеза характерны процессы формирования цветка (микро- и макроспорогенез), усиленный рост чашелистиков и увеличение размеров плодолистиков.

Растительный организм в это время предъявляет повышенные требования ко всем факторам жизни (влаге, элементам питания, теплу, свету и др.). В оптимальных условиях одновременно с развитием микро- и макроспор идут процессы усиленного роста всех генеративных органов.

На VII этапе органогенеза осуществляется формирование мужского и женского гаметофита: образуются обособленные одноядерные пыльцевые зерна, идет усиленный рост соцветия и покровных органов цветка. На данном этапе у многих видов, особенно у злаков, в зависимости от условий питания, влагообеспеченности и освещенности растений определяется степень рыхлости соцветия.

Следующий, VIII этап органогенеза характеризуется завершением процессов формирования всех органов соцветия и цветка и совпадает у пшеницы с выколашиванием, у кукурузы — с выбрасыванием нитей, у овса — с выметыванием, у гороха и бобов — с раскрытием цветков.

На IX этапе органогенеза идут процессы цветения, оплодотворения и образования зиготы. В результате двойного оплодотворения у высших растений возникают новые, качественно отличные морфофизиологические структуры — эмбрионально-эндоспермальные ткани.

Очередной, X этап характеризуется очень бурными органооб-разовательными процессами и ростом семян и плодов. У некоторых видов на этом этапе за несколько дней завязь увеличивается во много раз (тыква, арбуз, бобы, злаки и др.).

Рост плода в значительной мере зависит от наличия влаги в почве во время прохождения X этапа и от того, насколько растения были обеспечены на предыдущих этапах питательными веществами. Установлено, что наряду с макроэлементами (NPK) большое значение для нормального формирования плода имеет обеспеченность растений микроэлементами (бор, цинк, медь, молибден и др.).

Следующий, XI этап совпадает с фазой молочной спелости и характеризуется накоплением питательных веществ в семени.

Завершающий, XII этап органогенеза характеризуется превращением питательных веществ, поступивших в семя, в запасные вещества. Рост плода почти полностью приостанавливается. Этот этап у разных видов имеет разные названия: фазы восковой спелости у злаков, фазы бурых бобиков у ряда бобовых и др. На XII этапе определяются масса и выполненность семян, влияющие на продуктивность растений. Факторами, определяющими эти показатели, являются влагообеспеченность растений, температурные условия и дефицит упругости водяного пара в воздухе.

Такова краткая характеристика наиболее общих признаков основных двенадцати этапов органогенеза побегов высших покрытосеменных растений, к которым относятся все кормовые культуры, выращиваемые в России. Этапы органогенеза, как и фенологические фазы, проходят в определенной последовательности, обусловливая основные закономерности формирования урожая разных культур. Продолжительность этапов, интенсивность органообразовательных процессов определяются наследственностью сорта и степенью оптимизации факторов жизни растений. Знание условий, необходимых растениям для нормального прохождения отдельных этапов органогенеза, имеет большое значение для совершенствования технологий возделывания кормовых культур.

2. Влияние агроклиматических ресурсов основных природных зон и на полевое кормопроизводство

К основным факторам, определяющим продуктивность культур в полевом кормопроизводстве, относятся теплообеспеченность, приход ФАР, влагообеспеченность, условия перезимовки растений, неблагоприятные метеорологические явления (засухи, суховеи, заморозки и др.).

Тепловые ресурсы нашей страны вполне достаточны для выращивания почти всех кормовых культур, однако формирование их урожаев в разных природных зонах часто лимитируется влагообеспеченностью. Избыточное и недостаточное количество влаги отрицательно сказывается на растениях, они не могут полностью использовать ресурсы тепла для создания урожая. Ресурсы влаги очень изменчивы как по территории, так и во времени, поэтому наряду с оценкой теплообеспеченности необходима оценка влагообеспеченности той или иной местности.

Естественная производительность климата в большинстве регионов более точно отражается показателем увлажнения, вычисленным по суммам годовых осадков и дефицитов влажности воздуха. Это объясняется тем, что сельскохозяйственные культуры потребляют не только влагу осадков вегетационного периода, но и запасы, уже имевшиеся в почве к моменту сева. При наличии питательных веществ в плодородной почве скорость нарастания и биомасса урожая тем больше, чем выше влажность почвы и чем меньше дефицит упругости водяного пара в воздухе. Именно эта зависимость была положена в основу классификации климата по влагообеспеченности растений.

По годовым значениям показателя годового увлажнения КУ= P/∑dна территории страны выделено три основных типа увлажнения: I — осадки за год превышают возможное испарение, КУ > 0,45 (1,0) — область достаточного увлажнения; II — осадки за год меньше испаряемости, КУ составляет 0,45—0,15 (1,0— 0,33) — область недостаточного увлажнения; III — испаряемость значительно превышает осадки, КУ < 0,15 (0,33) — область незначительного увлажнения.

Для областей достаточного увлажнения характерны устойчивые урожаи всех кормовых культур. Вероятность снижения их продуктивности вследствие недостатка влаги не превышает 5— 12 % (чаще урожай может снижаться из-за избытка влаги).

В областях недостаточного увлажнения уменьшение урожаев кормовых культур обусловлено, как правило, снижением влагообеспеченности растений. Для полевого кормопроизводства в этих областях нужно подбирать засухоустойчивые культуры и выполнять комплекс агромероприятий, направленных на пополнение, сбережение и рациональное расходование влаги.

В областях незначительного увлажнения рентабельное полевое кормопроизводство возможно только на орошаемых землях.

Продуктивность полевого кормопроизводства определяется не только приходом ФАР, поступлением и соотношением тепла и влаги, но и другими сопутствующими факторами роста и развития растений (гранулометрический состав, кислотность и щелочность, засоленность почв, содержание в них гумуса и элементов питания в усвояемой для растений форме, рельеф, неблагоприятные погодные условия — низкие и высокие температуры, заморозки, суховеи и др.).

Приходом тепла и влаги определяется биоклиматический потенциал территории (БКП):


.

Для сравнительной оценки биологической продуктивности природных зон с разным сочетанием тепла и влаги используется формула для БКП, в которой за ∑tак(баз) могут быть приняты разные суммы активных температур: 1000 °С для сравнения с продуктивностью на границе возможного полевого земледелия; 1900 °С для сравнения со средней по стране продуктивностью, характерной для южно-таежной зоны; 3100 °С для сравнения с продуктивностью в оптимальных условиях роста в умеренном поясе, характерной для предгорных районов Краснодарского края.

В приведенной формуле коэффициент роста Кр(ку), представляющий отношение количества осадков к сумме средних суточных значений дефицита влажности воздуха, рассчитывают по уравнению Кр(Ку) = lg(20 КУ). При значении КУ = 0,50 создаются оптимальные условия для влагообеспеченности растений и Кр(КУ) равен единице.