Место работы:
Амстердамский университет
Награды и премии
Теорема Брауэра
Большая советская энциклопедия
Брауэр Лёйтзен Эгберт Ян
Брауэр (Brouwer) Лёйтзен Эгберт Ян (27.2.1881, Оверсхи,—2.12.1966, Амстердам), голландский математик, член Нидерландской АН в Амстердаме (1912), член-корреспондент Парижской и Гёттингенской АН, профессор Амстердамского университета (1912—51). С 1908 Б. последовательно проводил критику т. н. чистых математических доказательств существования, опирающихся на логичность исключенного третьего принцип, что в конечном счёте положило начало целому направлению в обоснованиях математики — математическому интуиционизму. Но независимую от философии интуиционизма ценность имеет проведённый Б. анализ математических доказательств существования с точки зрения конструктивного построения тех объектов, существование которых доказывается. В частности, А. Н. Колмогоровым было показано, что правила так называемой интуиционистской логики находят своё реальное осуществление в логике конструктивного решения математических проблем. В 1911—13 Б. установил ряд важных понятий и результатов в области топологии. В их числе: понятия симплициальной аппроксимации и степени непрерывного отображения; понятие гомотопической классификации отображений; теорема о гомотопической эквивалентности двух отображений (сферы на себя), имеющих одну и ту же степень; теорема об инвариантности числа измерений и инвариантности внутренних точек (при топологическом отображении множества, лежащего в n-мeрном пространстве, в это же пространство); теорема о неподвижной точке, n-мeрная теорема Жордана и др. Эти результаты и методы, найденные для их доказательства, определили значительное влияние Б. на развитие топологии в период между 1-й и 2-й мировыми войнами.
Лит.: Александров П. С., Комбинаторная топология, М. — Л., 1947; Вейль Г., О философии математики. Сб. работ, пер. с нем., М. — Л., 1934 (см. раздел: О новом кризисе основ математики).
БРАУЭР Лёйтзен Эгберт Ян
Дата рождения: 27.02.1881
Дата смерти: 02.12.1966
Страна: Нидерланды
Голландский математик, чл. Нидерландской АН в Амстердаме (1912), чл.-кор. Парижской и Геттингенской АН. Чл. Американского философского о-ва (Филадельфия, 1943), чл. Лондонского королевского о-ва (1948), почетный доктор ун-тов в Осло (1929) и Кембридже (1955). Род. в Оверсхи. Профессор Амстердамского ун-та (1912—1951). В 1911 — 1913 Брауэр получил ряд важных результатов в области общей топологии, в частности доказал теорему об инвариантности числа измерений при взаимнооднозначных непрерывных отображениях, теорему о неподвижной точке. Известны Брауэра группа (в алгебре), принцип Брауэра (в функциональном анализе), брауэровы многообразия в алгебраической топологии. Трудности, связанные с теоретико-множественными концепциями современной математики, привели Брауэр к коренной критике логических основ математики, в частности к применению закона исключенного третьего в математических доказательствах и созданию философско-математического направления — интуиционизма. Брауэр одним из первых оценил созданную П. С. Урысоном теорию и содействовал ее популяризации.
Брауэр Лейтзен Эгберт Ян
Брауэр (Brouwer) Лейтзен Эгберт Ян (27.2.1881, Оверсхи, — 2.12.1966, Амстердам), голландский математик, член Нидерландской АН в Амстердаме (1912), член-корреспондент Парижской и Геттингенской АН, профессор Амстердамского университета (1912—51). С 1908 Б. последовательно проводил критику т. н. чистых математических доказательств существования, опирающихся на логичность исключенного третьего принцип, что в конечном счете положило начало целому направлению в обоснованиях математики — математическому интуиционизму. Но независимую от философии интуиционизма ценность имеет проведенный Б. анализ математических доказательств существования с точки зрения конструктивного построения тех объектов, существование которых доказывается. В частности, А. Н. Колмогоровым было показано, что правила так называемой интуиционистской логики находят свое реальное осуществление в логике конструктивного решения математических проблем. В 1911—13 Б. установил ряд важных понятий и результатов в области топологии. В их числе: понятия симплициальной аппроксимации и степени непрерывного отображения; понятие гомотопической классификации отображений; теорема о гомотопической эквивалентности двух отображений (сферы на себя), имеющих одну и ту же степень; теорема об инвариантности числа измерений и инвариантности внутренних точек (при топологическом отображении множества, лежащего в n-мeрном пространстве, в это же пространство); теорема о неподвижной точке, n-мeрная теорема Жордана и др. Эти результаты и методы, найденные для их доказательства, определили значительное влияние Б. на развитие топологии в период между 1-й и 2-й мировыми войнами.
Лит.: Александров П. С., Комбинаторная топология, М. — Л., 1947; Вейль Г., О философии математики. Сб. работ, пер. с нем., М. — Л., 1934 (см. раздел: О новом кризисе основ математики).
Аренд Гейтинг (9 Мая, 1898 – 9 Июля, 1980) голландский математик и логик, студент и последователь Л. Э. Я. Брауэра член Нидерландской АН. Окончил Амстердамский университет (1922). Работал там же (с 1948 г. – профессор). Исследования посвящены основаниям математики. Один из виднейших представителей интуиционизма после Брауэра, опубликовал работу с изложением формальных правил интуиционистской логики высказываний. Интуиционистская логика стала частью математической логики.
Он родился в Амстердаме, Нидерланды, и умер в Лугано, Швейцария.
Аренд ГЕЙТИНГ (1898--1980)
Известный голландский математик и логик. Родился в Амстердаме, в семье школьного учителя. Окончил в 1922 г. Амстердамский университет. Ученик и последователь известного голландского математика, основоположника интуиционизма Л. Э. Я. Брауэра, под руководством которого в 1925 г. успешно защитил докторскую диссертацию. Работал учителем математики в средней школе, одновременно занимаясь математическими исследованиями (в 1928 г. был удостоен премии Голландской математической ассоциации). С 1936 г. работает в Амстердамском университете; с 1948 г. до выхода на пенсию в 1968 г. -- профессор этого университета. Член Нидерландской академии наук.
Исследования А. Гейтинга были посвящены основаниям математики. Он стал одним из виднейших после Брауэра представителей интуиционизма - системы философских и математических идей и методов, связанных с пониманием математики как совокупности "интуитивно убедительных" умственных построений. Продолжая развивать это направление в математике, А. Гейтинг изложил формальные правила интуиционистской логики высказываний, построил двузначную символическую логику. Во многом благодаря его работам интуиционистская логика стала частью математической логики.