Смекни!
smekni.com

Основные идеи интуиционизма (стр. 2 из 4)

В качестве простейшего примера рассмотрим следующую теорему чистого существования:

«для любого вещественного числа x найдётся натуральное число n, равное 1 в случае x = 0, и равное 2 в случае x\neq 0»

Признать такое число n действительно существующим мы могли бы лишь в том случае, если бы умели сравнивать произвольное вещественное число x с нулём, чего, однако, мы делать не умеем. Действительно, число x на деле задаётся некоторой бесконечной последовательностью рациональных чисел \{x_n\}_{n=1}^{\infty}. Эффективным способом сравнения числа x с нулём был бы лишь такой, который позволял бы производить это сравнение на основе просмотра некоторого конечного (пусть и очень большого) набора чисел xk. Однако такое рассмотрение не позволяет надёжно установить верность равенства x = 0.

Аналогичные трудности возникают при попытках прояснения статуса существования многих других объектов классического анализа, например, точек экстремума непрерывной функции на отрезке, нулей знакопеременных непрерывных функций на отрезке и т. д. Никакого способа эффективного построения указанных объектов в нашем распоряжении не имеется.

Такая критика классической математики не связана непосредственно с антиномиями теории множеств. Появление антиномий можно рассматривать как дополнительный довод в пользу неудовлетворительности теоретико-множественного подхода, но критика относится и к таким разделам математики, где антиномий не возникает.

[править] Интуиционистская логика

Для более ясной формулировки интуиционизма последователь Л. Э. Я. Брауэра А. Гейтинг создал интуиционистскую логику.

При построении интуиционистской математики обычные логические связки, употребляемые для формулировки математических суждений, истолковываются способом, отличным от классического. Любое суждение считается осмысленным, только если оно выражает возможность некоторого умственного построения, и считается истинным, только если исследователю удалось выполнить соответствующее построение. Так, утверждение, начинающееся с квантора существования, означает наличие способа мысленного построения искомого объекта. Дизъюнкция A\vee B суждений A и B означает возможность непосредственно указать среди этих суждений верное. С этой точки зрения, суждение вида A\vee\neg A может и не быть истинным, если проблема A не решена к настоящему времени. Отсюда видно, что закон исключённого третьего неприемлем в интуиционистской математике в качестве логического принципа.

Соотношение теоретико-множественной, интуиционистской и конструктивной математик с точки зрения допускаемых логических средств и абстракций может быть охарактеризовано следующей таблицей:

Теоремы и принципы Теоретико-множественная математика Интуиционистская математика Конструктивная математика

Закон исключённого третьего Да Нет Нет

Закон двойного отрицания Да Нет Нет

Принцип Маркова Да Нет Да

Абстракция актуальной бесконечности Да Частично * Нет

Тезис Чёрча * Да Нет Да

1. ↑ Отказ от абстракции актуальной бесконечности провозглашался как один из принципов интуиционизма, в то же время, впоследствии было показано, что использование принятого в интуиционизме аппарата построений на деле означает привлечение абстракции актуальной бесконечности.

2. ↑ Эффективность в интуиционизме понимается достаточно широко, она не обязательно связана с наличием алгоритма в точном понимании этого термина и может носить, например, характер исторического наступления события, зависеть от фактического решения проблем, от физических факторов.

Интуициони́зм — система философских и математических идей и методов, связанных с пониманием математики как совокупности «интуитивно убедительных» умственных построений. С точки зрения интуиционизма, основным критерием истинности математического суждения является интуитивная убедительность возможности проведения мысленного эксперимента, связываемого с этим суждением. Поэтому в интуиционистской математике отвергается теоретико-множественный подход к определению математических понятий, а также некоторые способы рассуждения, принятые в классической логике.

Интуиционистская математика является достаточно разработанным направлением, которое достигло многих существенных результатов, в том числе и в таких областях, как теория меры, функциональный анализ, топология, теория дифференциальных уравнений.

Интуиция

(от лат. intuitio — пристальное, внимательное всматривание, созерцание) — способность к прямому усмотрению ис­тины, постижению ее без всякого рассуждения и доказательства. Для И. обычно считаются типичными неожиданность, невероят­ность, непосредственная очевидность и неосознанность пути, ве­дущего к ее результату. С «непосредственным схватыванием», внезапным озарением и прозрением много неясного и спорного. Иногда даже говорится, что И. - это куча хлама, в которую свали­ваются все интеллектуальные механизмы, о которых не известно, как их проанализировать. И., несомненно, существует и играет за­метную роль в познании. Далеко не всегда процесс научного и тем более художественного творчества и постижения мира осущес­твляется в развернутом, расчлененном на этапы виде. Нередко че­ловек охватывает мыслью сложную ситуацию, не отдавая отчета во всех ее деталях, да и просто не обращая внимания на них. Особенно наглядно это проявляется в военных сражениях, при постановке диагноза, при установлении виновности и невиновности и т. п. 137 Из многообразных трактовок И. можно эскизно наметить сле­дующие: >> И. Платона как созерцание стоящих за вещами идей, прихо­дящее внезапно, но предполагающее длительную подготовку ума; >> интеллектуальная И. Декарта как понятие ясного и внима­тельного ума, настолько простое и отчетливое, что не оставляет никакого сомнения в том, что мы мыслим; >> И. Спинозы, являющаяся «третьим родом» познания (наряду с чувствами и разумом) и схватывающая сущность вещей; >> чувственная И. Канта и его более фундаментальная чистая И. пространства и времени, лежащая в основе математики; >> художественная И. Шопенгауэра, улавливающая сущность мира как мировую волю; >> И. философии жизни (Ницше), несовместимая с разумом, логикой и жизненной практикой, но постигающая мир как фор­му проявления жизни; >> И. Бергсона как непосредственное слияние субъекта с объек­том и преодоление противоположности между ними; >> моральная И. Мура как непосредственное видение добра, не являющегося «естественным» свойством вещей и не допускающе­го рассудочного определения; >> чистая И. времени Брауэра, лежащая в основе деятельности мысленного конструирования математических объектов; >> И. Фрейда как скрытый, бессознательный первоисточник твор­чества; >> И. Полани как спонтанный процесс интеграции, непосред­ственного внезапного усмотрения целостности и взаимосвязи в ранее разрозненном множестве объектов. Этот перечень может быть продолжен. В сущности, едва ли не у каждого крупного философа и психолога имеется свое собствен­ное понимание И. В большинстве случаев эти понимания не ис­ключают друг друга. И. как «прямое видение истины» не является чем-то сверхра­зумным. Она не идет в обход чувств и мышления и не составляет особого рода познания. Ее своеобразие состоит в том, что отдель­ные звенья процесса мышления проносятся более или менее бес­сознательно и запечатлевается только итог мысли — внезапно от­крывшаяся истина. Существует давняя традиция противопоставлять И. логике. Не­редко И. ставится выше логики даже в математике, где роль стро­гих доказательств особенно велика. Чтобы усовершенствовать ме­тод в математике, полагал Шопенгауэр, необходимо прежде всего отказаться от предрассудка — веры в то, будто доказанная истина выше интуитивного знания. Паскаль проводил различие между «ду­хом геометрии» и «духом проницательности». Первый выражает силу и прямоту ума, проявляющиеся в железной логике рассуж­дений, второй — широту ума, способность видеть глубже и про­зревать истину как бы в озарении. Для Паскаля даже в науке «дух проницательности» независим от логики и стоит неизмеримо выше ее. Еще раньше некоторые математики утверждали, что интуитив­ное убеждение превосходит логику, подобно тому как ослепи­тельный блеск Солнца затмевает бледное сияние Луны. Неумеренное возвеличение И. в ущерб строгому доказательству неоправданно. Логика и И. не исключают и не подменяют друг друга. В реальном процессе познания они, как правило, тесно пе­реплетаются, поддерживая и дополняя друг друга. Доказательство санкционирует и узаконивает достижения И., оно сводит к мини­муму риск противоречия и субъективности, которыми всегда чре­вато интуитивное озарение. Логика, по выражению математика Г.Вейля, - это своего рода гигиена, позволяющая сохранить идеи здоровыми и сильными. И. отбрасывает всякую осторожность, ло­гика учит сдержанности. Только проведенное шаг за шагом логи­ческое доказательство делает завоевания И. объективно установ­ленным результатом. Уточняя и закрепляя результаты И., логика сама обращается к ней в поисках поддержки и помощи. Логические принципы не яв­ляются чем-то заданным раз и навсегда. Они формируются в мно­говековой практике познания и преобразования мира и представ­ляют собой очищение и систематизацию стихийно складывающихся «мыслительных привычек». Вырастая из аморфной и изменчивой пралогической И., из непосредственного, хотя и неясного «виде­ния логического», эти принципы всегда остаются связанными с изначальным интуитивным «чувством логического». Не случайно строгое доказательство ничего не значит даже для математика, если результат остается непонятным ему интуитивно. Логика и И. не должны противопоставляться друг другу, каж­дая из них необходима на своем месте. Внезапное интуитивное озарение способно открыть истины, вряд ли доступные последова­тельному и строгому логическому рассуждению. Однако ссылка на И. не может служить твердым и тем более последним основанием для принятия каких-то утверждений. И. приводит к интересным новым идеям, но она нередко порождает также ошибки, вводит в заблуждение. Интуитивные догадки субъективны и неустойчивы, они нуждаются в логическом обосновании. Чтобы убедить в инту- итивно схваченной истине как других, так и самого себя, требу­ется развернутое рассуждение, доказательство (см.: Аргументация контекстуальная).