Смекни!
smekni.com

Основные ошибки в индуктивных умозаключениях (стр. 2 из 3)

Завершая рассмотрения характерных свойств полной индукции, отмечая непререкаемую истинность получаемых в полной индукции результатов, выделим тот факт, что её далеко не всегда можно применять в реальной жизни, в том числе и в судебной практике. В большинстве случаев, когда мы не можем зафиксировать все случаи наблюдаемого явления, заключение делаем для всех, применяют неполную индукцию.

2. Неполная индукция

Неполная индукция – это умозаключение, в котором на основе принадлежности признака некоторым элементам или частям класса делают вывод о его принадлежности классу в целом.

Неполная индукция есть индуктивное умозаключение в строгом смысле содержания данного понятия.

Пример неполной индукции:

Гелий имеет валентность – 0

Неон имеет валентность – 0,

Аргон имеет валентность – 0

Гелий, неон и аргон – инертные газы.

Следовательно, все инертные газы имеют валентность – 0.

В данном рассуждении на основе обнаружения нулевой валентности у трёх представителей инертных газов делается заключение, что этим свойством обладают все инертные газы.

По способу отбора посылок, обоснования заключения неполная индукция делится на три вида: индукцию через простое пересечение (популярная индукция); научную индукцию на основе установления причинной связи; статистические обобщения.

Последний, особый, вид умозаключений связан с анализом массовых событий. К таким событиям, связанным с деятельностью юриста, можно отнести: распространение заболеваемости в процессе эпидемий и других случаев; смертность людей; массовые миграции граждан; природные и техногенные катаклизмы.

2.1. Популярная индукция. индукция через простое перечисление, похожа на полную индукцию, но с тем только отличием, что она имеет дело с конечными необозримыми и с бесконечными множествами интересующих нас предметов.

Популярная индукция – это такое обобщение, в котором путём перечисления устанавливают повторяемость признака у некоторых явлений класса, на основе чего проблематично заключают о его принадлежности ко всему классу явлений.

Выводы данной индукции носят вероятностный характер и не совсем надёжны, но в жизни мы её не только часто наблюдаем, но и прослеживаем в оценках наших руководителей. На основе популярной индукции родилось немало народных примет. Например: « Если наблюдается красный закат солнца, то следующий день будет ветреным». Ход умозаключения здесь можно выразить так : насколько мы знаем, исключений из данного положения не встречалось, следовательно, оно может иметь общее значение. Обоснованием для общего вывода в этой индукции служит незнание противоречивых случаев. Отсутствие их в нашем опыте ещё не может служить гарантией того, что они вообще не существуют. Например: столкнувшись с ошибками в ответе студента, ему заявляют: « Вы ничего не знаете по данному вопросу». Но очень часто это неверное заявление. Большей частью ошибочные заключения данного вида появляются при недобросовестном, предвзятом отношении.

Вообще для того чтобы вывод, полученный с использованием такого вида индукции, был более правдоподобным. Нужно соблюдать следующие условия: во-первых, число случаев, зарегистрированных в посылках, должно быть, возможно, большим; во – вторых, факты, на основе которых делается вывод, должны быть как можно более разнообразными; в – третьих, факты, на основе которых делается вывод, должны быть типичными, существенными. Тогда процесс умозаключения состоит в том, что исследуемые факты, предметы, явления методически отбираются, а не берутся стихийно, без всякого плана и системы. Используются приёмы, которые обеспечивают репрезентативность и генерализацию выбора. Чем совершеннее метод отбора, тем больше гарантия получения обоснованного индуктивного вывода.

2.2. Научная индукция

Выводы научной индукции не только дают обобщенные знания , но и раскрывают причинную связь, что представляет особую ценность для судебной практики.

Научной индукцией на основе установления причинной связи называется умозаключение, в посылках которого наряду с повторяемостью признака у некоторых явлений класса содержится информация о зависимости этого признака.

Научная индукция так же как и полная индукция и математическая , может дать достоверные заключения. Обусловлено это тем, что в ней учитывается важнейшая из необходимых связей – причинная.

Причинной (казуальной) называется такая объективная связь между двумя явлениями, когда одно из них – причина вызывает другое явление – действие.

Причинную связь необходимо отличать от функциональной. Функциональная связь обратима. В ней аргумент и функция равноценны по своему значению и могут быть переставлены местами.

2.3. Статистическое обобщение – это умозаключение неполной индукции, к котором установленная в посылках количественная информация о частоте определённого признака в исследуемой группе (образце) переносится в заключении на все множество явлений этого рода.

В отличие то индукции через перечисление при отсутствии противоречащего случая в посылках статистического умозаключения содержится следующая информация:

а) Общее число составляющих группу или образец случаев;

б) число случаев, в которых присутствует интересующий исследователя признак.

в) частота появление интересующегося признака.

В связи с этим статистическое умозаключение можно в определённой степени математически формализовать и получать независимые количественные показатели, которые имеют своё качественное содержание. Конечно, эта часть умозаключения - перевод количественных показателей на качественные – принадлежат человеку.

Индуктивные умозаключения, не обладающие надёжностью вывода, могут расширять наши знания. В этом и заключается преимущество аналогии и индукции, Именно поэтому они употребляются в науке, судебной практике, обыденной жизни. Это правдоподобные рассуждения.

Дедуктивные умозаключения обладают надёжностью вывода, но они не увеличивают объём знаний, имеющихся в распоряжении человека, совершающего эти умозаключения.

3. Методы индуктивного исследования

Для причинной связи характерны следующие свойства: всеобщность, последовательность во времени; необходимый характер; однозначная зависимость между причиной и действием. Для установления причинной связи в этом виде дедукции мы обязаны пользоваться определёнными методами и соблюдать при этом необходимую структуру рассуждений. Наиболее употребительными из методов являются следующие: метод единственного сходства; метод единственного различия; соединённый метод сходства и различия; метод сопутствующих изменений; метод остатков.

3.1 Метод единственного сходства называют методом нахождение сходного в различном, так как сравниваемые случаи нередко заметно отличаются друг от друга и строятся на правиле:

Если какое-то условие «А» постоянно предшествует наступлению исследуемого явления «Х» в то время, как иные условия изменяются, то это условие, вероятно, есть причина явления «Х».

По методу единственного различия сравниваются два случая. Один случай - когда имеет место явление, причину которого мы ищем, другой – когда это явление отсутствует. Смысл метода состоит в том, что, выделив обстоятельство, которое различает эти случаи, он утверждает, что оно и будет считаться причиной данного явления. Выделим правило:

Если какое-то условие «А» имеет место, когда наступает исследуемое явление «Х», и отсутствует, когда этого явления нет, а все остальные условия остаются неизменными, - то «А» представляет причину «Х».

3.2. Соединительный метод сходства и различия представляет собой комбинацию первых двух методов, когда путём анализа множества случаев обнаруживают как сходное в различном, так и различное в сходном. Выделим правило:

Если два или больше число случаев, когда наступает данное явление «Х», сходны только в одном условии «А», в то время как два или более случаев, когда данное явление «Х» отсутствует, отличаются от первых случаев только тем, что отсутствует условие «А», то это условие «А» и есть причина «Х».

3.3. Метод сопутствующих изменений применяется тогда, когда при видоизменении одного из обстоятельств происходит видоизменение исследуемого действия. При этом все условия в каждом случае весьма сходны, за исключением одного обстоятельства, параметры которого изменяются. Рассмотрим правило:

Если с изменением условия «А» в той же степени меняется некоторое явление «Х», а остальные обстоятельства остаются неизменными, то, вероятно, «А» является причиной «Х».

3.4. Метод остатков является самым слабым из всех известных методов научной индукции. Однако имеется ряд случаев, в которых он находит своё применение. Рассмотрим правило:

Если сложные условия производят сложные действие и известно, что часть условий вызывает определённую часть этого действия, то остающаяся часть условий вызывает остающуюся часть действий

Рассуждения по методу остатков используется главным образом в тех случаях, когда устанавливают явную несоразмерность причин исследуемых действий.