Смекни!
smekni.com

Логика как наука. История развития логики (стр. 1 из 13)

Логика – как наука. История развития логики.

Формы человеческого мышления

Слово логика означает как совокупность правил, которым подчиняется процесс мышления, так и науку о правилах рассуждений. (Логика – это наука правильно рассуждать, наука о законах и формах человеческого мышления). Логика, как наука о законах и формах мышления изучает абстрактное мышление как средство познания объективного мира.

Если теория алгоритмов – в некотором смысле мать современных ЭВМ и программирования, то логика – их отец.

Умение рассуждать, логически мыслить, давать ответы на поставленные вопросы играет очень важную роль в жизни человека. Выделение логических задач носит до некоторой степени условный характер. Трудно определить, какую задачу следует назвать логической. Кажется, любая задача является таковой, так как для её решения требуются определенные логические рассуждения. И это верно, но все же по традиции для тренировки именно логического мышления человеком придумано множество задач, в которых речь идет об объектах, вообще говоря, произвольной природы. Именно такими задачами и правилами их решения мы и займемся.

Но какое отношение логика имеет к вычислительной технике и программированию? Оказывается, самое непосредственное. Именно логика является теоретической основой современных ЭВМ и сложных управляющих систем. Она приобретает важное прикладное значение – особенно в области разработки специальных языков для баз данных и представления знаний. Используя методы и средства логической науки, ученые разрабатывают эффективные языки программирования.

Например, основой так называемого доказательного программирования является формальная логика. Общая идея здесь, как говорится, лежит на поверхности: если можно конструктивно, используя интуицию, доказать, что существуют объекты, удовлетворяющие некоторому данному условию, то, построив доказательство, можно построить по нему и программу вычисления соответствующего условия (функции).

Опять же, в основе так называемого логического программирования лежат структуры логических доказательств.

Но особое значение логическая наука стала приобретать в вопросах, касающихся проблемы искусственного интеллекта. Именно здесь разработчикам пришлось создать новую область логических исследований – логический анализ.

Аристотель (384 – 322 гг. до н.э.) по праву считается основоположником логики. Он подверг анализу человеческое мышление и его формы: понятие, суждение, умозаключение. В своих определениях Аристотель представляет логику как науку о выводе одних умозаключений из других сообразно их логической форме, поэтому логику Аристотеля называют формальной. ( Он рассмотрел мышление со стороны строения, структуры, то есть с формальной стороны). (Формальная логика – наука о законах и формах мышления).

В течение многих веков логика помогала математике стать строгой, последовательной наукой. Постепенно взаимная связь между математикой и логикой привела к тому, что логика оказалась под влиянием математики.

После падения античной цивилизации развитие математики, и особенно логики, замедлилось, потому что новые логические идеи нередко вступали в противоречие с формами мышления церкви. Любопытно отметить: первое, что было восстановлено из античной науки, - это именно логика Аристотеля.

Первые идеи использования общепринятых математических методов в логике появились в XVII в., в трудах французского философа и математика Рене Декарда (1596-1650), немецкого философа и математика Вильгельма Лейбница(1646 – 1716). Лейбниц впервые высказал мысль о возможности применения двоичной системы счисления в вычислительной математике. Он считал, что можно заменить простые рассуждения действиями со знаками и привел соответствующие правила.

Но этим идеям Лейбница суждено было получить дальнейшее развитие лишь в середине XIX века в трудах другого великого математика Джорджа Буля, отца писательницы Э. Войнович – автора романа «Овод». Он вывел для логических построений

Особую алгебру (алгебру логики). В отличие от обычной, в ней символами обозначают не числа, а высказывания. Алгебру логики по другому называют булевой алгеброй.

Большой вклад в развитие математической логики также внесли Аугустус де Морган (1806-1871), Уильям Стенли Джевонс(1835-1882), Платон Сергеевич Порецкий(1846-1907), Чарлз Сандерс Пирс (1839-1914) и др.

Сегодня математическая логика нашла приложение в вопросах конструирования и применения вычислительной техники. В ЭВМ информация подвергается не только математической, но и логической обработке. Основу работы логических схем и устройств ЭВМ составляет специальный математический аппарат – раздел математической логики, называемой алгеброй логики.

Прежде чем перейти к изучению данной темы необходимо повторить следующие темы: информация, виды информации, способы получения информации и т.д.

Одной из форм получения информации является речь. Информацию человек может получить через вопросы и ответы. Каждый вопрос выражает потребность в знании определенных сведений об окружающем нас мире. Эти знания мы высказываем в форме суждений.

Основные формы абстрактного мышления:

- ПОНЯТИЯ,

- СУЖДЕНИЯ,

- УМОЗАКЛЮЧЕНИЯ.

Понятие – форма мышления, в которой отражаются существенные признаки отдельного предмета или класса однородных предметов.

Примеры понятий: Портфель, трапеция, ураганный ветер.

В понятиях «схватываются» сущность предметов, их внутреннее содержание.

Суждение – это форма мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях. (Суждением (высказыванием) называется всякое утверждение (или всякое предложение), о котором можно судить, истинно оно или ложно).

Суждение выражается в виде повествовательного предложения.

Суждение может быть простым или сложным.

Суждение считается простым, если некая его часть не является суждением.

Сложные суждения характеризуются тем, что образованы из нескольких суждений с помощью определенных способов соединения суждений.

Например: «Париж – столица Албании» - простое суждение

А суждение: «Неверно, что Париж – столица Албании» - сложное, потому что его часть является тоже суждением.

Море соленое. Снег бело-голубой. Земля плоская. В речке вода солёная. Океан пресноводный. 5*5=25.

Если наступят каникулы, то я поеду или к бабушке или в дом отдыха.

Сложные суждения чаще всего образуются как составные. Они получаются из простых или элементарных суждений с использованием связок «И», «ИЛИ», «ЕСЛИ…, ТО», «НЕ».

Суждения могут быть истинными или ложными. Непосредственно наблюдаемые факты мы обычно принимаем за истинные, а стремление выдать желаемое за действительное либо из-за ошибки в рассуждениях или предположениях – за ложные.

Суждения бывают частные и общие. Частные суждения выражают конкретные (частные) факты. Например: «7-2>3», «Луна – спутник Земли».

Общие суждения характеризуют свойства объектов или явлений.

Примеры общих суждений: Все фрукты полезны. У кошки четыре ноги, а сзади её хвост.

«В любом прямоугольном треугольнике есть угол в 900», «Всякий человек -млекопитающее». Общее суждение называется тождественно (абсолютно) истинным, если оно справедливо для любого объекта, о котором говорится в суждении. Второе суждение верно для всех кошачьих. Суждение «Зимой идет снег» не тождественно истинно, так как, например. 20 января 2003 года снег не шел.

Если из двух суждений выводится третье, то этот процесс называется умозаключеним.

Умозаключение – прем мышления, посредством которого из исходного знания получается новое знание.

Возьмём первое суждение:

«Академик Ершов русифицировал язык Паскаль»

Второе суждение:

«Язык Паскаль – структурный язык».

Тогда вывод из этих суждений:

«Академик Ершов русифицировал структурный язык» - будет умозаключением.

Цепочка взаимосвязных суждений, фактов, общих положений и умозаключений, получаемых из других суждений по определенным правилам есть рассуждения.

Главная задача логики состоит в том, чтобы выявит, какие способы рассуждения правильные, а какие нет.

Вопросы:

  1. Что такое логика? Какими формами человеческого мышления она занимается?
  2. Приведите краткую историю развития математической логики.
  3. Какова главная задача логики?
  4. Какую роль играют знания логики в вычислительной технике и программировании? Где она имеет прямое приложение?

Высказывания в логике. Простые и сложные высказывания.

Логические операции. Таблицы истинности.

В основе логических схем и устройств ПК лежит специальный математический аппарат, использующий законы математической логики. Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем. Знание логики необходимо при разработке алгоритмов и программ, так как в большинстве языков программирования есть логические операции.

В математической логике суждения называют высказываниями. Алгебру логики иначе называют алгеброй высказываний.

ВЫСКАЗЫВАНИЕ – это повествовательное предложение, о котором можно сказать, истинно оно или ложно.

Например:

Земля – планета Солнечной системы - истинно

2+8<5 - ложно

5*5=25 - истинно

А вот примеры, не являющиеся высказываниями:

Уходя, гасите свет;

Да здравствует мыло душистое и полотенце пушистое.

Высказывания, приведенные выше, являются простыми. Сложные высказывания получаются путем объединения простых высказываний связками – союзами И, ИЛИ, и частицей НЕ. Значение истинности сложных высказываний зависит от истинности входящих высказываний и от объединения их связок.