К основным методам, применяемым для решения научных и практических задач в области логистики, следует отнести методы системного анализа, методы теории исследования операций, кибернетический подход и прогностику. Применение этих методов позволяет прогнозировать материальные потоки, создавать интегрированные системы управления и контроля за их движением, разрабатывать системы логистического обслуживания, оптимизировать запасы и решать ряд других задач.
Принятие решений по управлению материальными потоками до начала широкого применения логистики в значительной степени основывалось на интуиции квалифицированных снабженцев, сбытовиков, производственников, транспортников. Развивая методологический аппарат, современная логистика, наряду с разработкой и использованием формализованных методов принятия решений, изыскивает возможности широкого применения опыта названной категории профессионалов. С этой целью разрабатываются так называемые системы экспертной компьютерной поддержки (или экспертные системы), позволяющие персоналу, не имеющему глубокой подготовки в логистике, принимать быстрые и достаточно эффективные решения.
Широкое применение в логистике имеют различные методы моделирования, т. е. исследования логистических систем и процессов путем построения и изучения их моделей. При этом под логистической моделью понимается любой образ, абстрактный или материальный, логистического процесса или логистической системы, используемый в качестве их заместителя.
Основная цель моделирования - прогноз поведения системы. Ключевой вопрос моделирования «ЧТО БУДЕТ, ЕСЛИ...?»
Логистические системы функционируют в условиях неопределенности окружающей среды. При управлении материальными потоками должны учитываться факторы, многие из которых носят случайный характер. В этих условиях создание аналитической модели, устанавливающей четкие количественные соотношения между различными составляющими логистических процессов, может оказаться либо невозможным, либо слишком дорогим.
При имитационном моделировании закономерности, определяющие характер количественных отношений внутри логистических процессов, остаются непознанными. В этом плане логистический процесс остается для экспериментатора «черным ящиком».
Процесс работы с имитационной моделью, в первом приближении, можно сравнить с настройкой телевизора рядовым телезрителем, не имеющим представления о принципах работы этого аппарата. Телезритель просто вращает разные ручки, добиваясь четкого изображения, не имея при этом представления о том, что происходит внутри «черного ящика».
Точно так же экспериментатор «вращает ручки» имитационной модели, меняя при этом условия протекания процесса и наблюдая получаемый результат. Определение условий, при которых результат удовлетворяет требованиям, является целью работы с имитационной моделью.
Имитационное моделирование включает в себя два основных процесса: первый — конструирование модели реальной системы, второй — постановка экспериментов на этой модели.
При этом могут преследоваться следующие цели:
а) понять поведение логистической системы;
б) выбрать стратегию, обеспечивающую наиболее эффективное функционирование логистической системы.
Как правило, имитационное моделирование осуществляется с помощью компьютеров.
Перечислим основные условия, при которых рекомендуется применять имитационное моделирование:
1. Не существует законченной математической постановки данной задачи, либо еще не разработаны аналитические методы решения сформулированной математической модели.
2. Аналитические модели имеются, но процедуры столь сложны и трудоемки, что имитационное моделирование дает более простой способ решения задачи.
3. Аналитические решения существуют, но их реализация невозможна вследствие недостаточной математической подготовки имеющегося персонала.
Таким образом, основным достоинством имитационного моделирования является то, что этим методом можно решать более сложные задачи. Имитационные модели позволяют достаточно просто учитывать случайные воздействия и другие факторы, которые создают трудности при аналитическом исследовании.
При имитационном моделировании воспроизводится процесс функционирования системы во времени. Причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени. Модели не решают, а осуществляют прогон программы с заданными параметрами, меняя параметры, осуществляя прогон за прогоном.
Имитационное моделирование имеет ряд существенных недостатков, которые также необходимо учитывать.
1. Исследования с помощью этого метода обходятся дорого.
Причины:
- для построения модели и экспериментирования на ней необходим высококвалифицированный специалист-программист;
- необходимо большое количество машинного времени, поскольку метод основывается на статистических испытаниях и требует многочисленных прогонов программ;
- модели разрабатываются для конкретных условий и, как правило, не тиражируются.
2. Велика возможность ложной имитации. Процессы в логистических системах носят вероятностный характер и поддаются моделированию только при введении определенного рода допущений. Например, разрабатывая имитационную модель товароснабжения района и принимая среднюю скорость движения автомобиля на маршруте, равную 25 км/ч, мы исходим из допущения, что дорожные условия хорошие. В действительности погода может испортиться и, в результате наступившего гололеда, скорость на маршруте упадет до 15 км/ч. Реальный процесс пойдет иначе.
Описание достоинств и недостатков имитационного моделирования можно завершить словами Р. Шеннона: «Разработка и применение имитационных моделей в большей степени искусство, чем наука. Следовательно, успех или неудача в большей степени зависит не от метода, а от того, как он применяется».
Экспертные системы в логистике.
Под экспертными системами в логистике понимают специальные компьютерные программы, помогающие специалистам принимать решения, связанные с управлением материальными потоками. Экспертная система может аккумулировать знания и опыт нескольких специалистов-экспертов, работающих в разных областях. Труд высококвалифицированных экспертов стоит дорого, однако, как правило, требуется не повседневно. Возможность получить совет экспертов по разным вопросам посредством обращения к компьютеру позволяет квалифицированно решать сложные задачи, повышает производительность труда персонала и в то же время не требует затрат на содержание штата высокооплачиваемых специалистов.
Применение экспертных систем позволяет:
- принимать быстрые и качественные решения в области управления материальными потоками;
- готовить опытных специалистов за относительно более короткий промежуток времени;
- сохранять «ноу - хау» компании, так как персонал, пользующийся системой, не может вынести за пределы компании опыт и знания, содержащиеся в экспертной системе;
- использовать опыт и знания высококвалифицированных специалистов на непрестижных, опасных, скучных и тому подобных рабочих местах.
К недостаткам экспертных систем следует отнести ограниченную возможность использования «здравого смысла». Логистические процессы включают множество операций с разнообразными грузами. Учесть все особенности в экспертной программе невозможно. Поэтому, чтобы не поставить коробку весом в сто килограммов на коробку весом в пять килограммов здравым смыслом, дополняющим знания экспертной системы, должен обладать пользователь.
Обращение с экспертными программами за короткий промежуток времени формирует опытного специалиста. В то же время, задача повышения обучающих возможностей экспертных систем является сегодня актуальной, так как большинство программ не объясняют пользователю причины рекомендуемых решений.
Экспертные системы применяются на различных стадиях логистического процесса, облегчая решение проблем, требующих значительного опыта и затрат времени. Например, на складе, при принятии решения о пополнении запасов, когда менеджеру необходимо оценить большой объем разнообразной информации: ожидаемые цены в разрезе закупаемых товаров, тарифы на доставку, необходимость одновременного пополнения запасов по разным позициям ассортимента и т. д. Использование здесь экспертных систем позволяет принимать не только правильные, но и быстрые решения, что зачастую не менее важно.
Список используемой литературы
1. Сумец А.М. Логистика: Учеб. пос./ Киев: «Хай-Тек Пресс», 2008. – 320 с.
2. Киршина М.В. Коммерческая логистика/ М. В. Киршина. - М.: Центр экономики и маркетинга, 2008.
3. Коммерческая деятельность производственных предприятий (фирм): Учеб. /Санкт-Петербург. гос. ун-т экономики и финансов; О.А. Новиков, В.О. Бахарев, С.А. Уваров и др.; Под общ. ред.: О.А. Новикова, В.В. Щербакова. - СПб.: Изд-во СПбГУЭФ, 2006.
4. Неруш Ю.М. Коммерческая логистика: Учеб. для вузов по направлениям "Менеджмент" и "Коммерция", спец. "Менеджент", "Коммерция" и "Маркетинг". - М.: Банки и биржи, 2004.
5. Ардадова М.М., Логистика в вопросах и ответах. - М.: ТК Велби , изд. Проспект, 2004, - 272 с.
6. http://www.i-u.ru/biblio/archive/gadjinskiy_logistika/default.aspx