Такая структура системы (2.1) позволяет легко установить ее ранг. Действительно, покажем, что совокупность неизвестных, образующих первую строку и первый столбец матрицы перевозок, можно принять в качестве базиса. При таком выборе базиса, по крайней мере, один из двух их индексов равен единице, а, следовательно, свободные неизвестные определяются условием
где символы
При этом легко заметить, что под символами такого суммирования объединяются только свободные неизвестные (здесь
В рассматриваемой нами системе только два уравнения, а именно первое горизонтальное и первое вертикальное, содержат более одного неизвестного из числа выбранных нами для построения базиса. Исключив из первого горизонтального уравнения базисные неизвестные
где символ
Так как для закрытой модели транспортной задачи
В системе (2.3) выделен указанный выше базис: базисные неизвестные из первых т уравнений образуют первый столбец матрицы перевозок, а базисные неизвестные остальных уравнений образуют первую строку матрицы перевозок без первого неизвестного
Для решения транспортной задачи необходимо кроме запасов и потребностей знать также и тарифы
Совокупность тарифов
Пункты Отправления | Пункты назначения | Запасы | ||||||||
| | … | | |||||||
| | | … | | | |||||
| | | ||||||||
| | | … | | | |||||
| | | ||||||||
… | … | … | … | … | … | |||||
| | | … | | | |||||
| | | ||||||||
Потребности | | | … | | или |
Сумма всех затрат, т. е. стоимость реализации данного плана перевозок, является линейной функцией переменных
Требуется в области допустимых решений системы уравнений (2.1) и (2.1.1) найти решение, минимизирующее линейную функцию (2.4).
Таким образом, мы видим, что транспортная задача является задачей линейного программирования. Для ее решения применяют также симплекс-метод, но в силу специфики задачи здесь можно обойтись без симплекс-таблиц. Решение можно получить путем некоторых преобразований таблицы перевозок. Эти преобразования соответствуют переходу от одного плана перевозок к другому. Но, как и в общем случае, оптимальное решение ищется среди базисных решений. Следовательно, мы будем иметь дело только с базисными (или опорными) планами. Так как в данном случае ранг системы ограничений-уравнений равен