Смекни!
smekni.com

Логистика и её сущность (стр. 4 из 8)

Четвертый элемент кибернетической модели- обратная связь. Это связь между выходом какого- либо элемента и входом предшествующего ему в той же системе элемента. Она выполняет целый ряд операций по корректированию элементов системы. Различают положительную и отрицательную обратные связи. Положительная обратная связь возвращает на вход часть сигнала, полученного на выходе элемента или системы. Положительная обратная связь не корректирует сигнал на входе, а только увеличивает его значение.

При отрицательной обратной связи полученный по ней сигнал может и не совпадать по знаку с первоначальным. Это дает возможность сопоставить полученный результат с намеченной целью и в случае необходимости откорректировать поведение элемента или системы в целом. На практике важна своевременность такой корректировки, чтобы избежать значительного отклонения системы от траектории движения к намеченной цели. Принцип обратной связи лежит в основе логистического управления производственно- коммерческой деятельностью, он характеризует способность логистической системы воспринимать и использовать информацию о результатах собственной деятельности для достижения цели наилучшим (оптимальным) образом и в кратчайшие сроки. Учет выпущенной цехом продукции и израсходованного сырья, регулирование ценами спроса на продукцию, материальное стимулирование, использование тарифов для привлечения груза на транспорт- это разные формы обратных связей в логистических кибернетических системах.

Пятый и последний элемент кибернетической модели логистической системы- ограничения, которые состоят из целей системы и так называемых принуждающих связей. Для производственно- коммерческих систем одной из целей, является выпуск продукции заданных номенклатуры, объема и качества, себестоимости; для информационной части системы- получение требуемой информации. В качестве принуждающих связей в этих случаях могут выступать различные лимиты ресурсов, метод переработки информации, технические характеристики средств для его реализации и т.д.

В соответствии с принятой трактовкой логистической системы ее деление на подсистемы представляет собой расчленение логистического процесса на подпроцессы (операции, функции) с соответствующими входами и выходами. Любой вид данного логистического процесса- это вход последующего (не бывает входов «неоткуда» и выходов «в никуда»; если ресурс где то произведен, значит он для чего то нужен), т.е. все процессы взаимосвязаны. Именно связь и определяет следование логистических процессов.

Информационный подход к процессам управления- первая особенность кибернетики. В информационной трактовке кибернетического подхода управление в организационных системах, к числу которых относятся логистические системы, рассматривается прежде всего как процесс преобразования информации: информация об объекте управления воспринимается управляющей системой, перерабатывается в соответствии с той или иной целью управления и в виде управляющих воздействий передается на объект управления. Поэтому понятие информации принадлежит к числу наиболее фундаментальных понятий кибернетики. В информационной трактовке процессы кибернетического управления связаны с получением, передачей, переработкой и использованием информации. Процессы получения информации, ее хранение и передачи в этом случае отождествляются с понятием «связь». Переработка воспринятой информации в сигналы, направляющие деятельность в объекте, отождествляется с понятием управление. Если системы способны воспринимать и использовать информацию о результатах своего функционирования, то говорят, что они обладают обратной связью. Переработка информации, идущей по каналам обратной связи, в сигналы, корректирующие деятельность системы, называют регулированием. Между терминами «управление» и «регулирование» существует различие: если считать, что управление обозначает воздействие на результаты работы системы для достижения намеченной цели, то регулирование обозначает тип управления, основанный на методе выравнивания отклонений от нормы (эталона, заданной величины). Устройства (или органы), служащие для этой цели, носят название регуляторов.

Кибернетическое регулирование.

В кибернетическом управлении ЛС по каналам обратной связи передаются различные учетно- статистические сведения. Обратная связь создает возможность эффективного управления в изменяющихся условиях функционирования объекта управления даже в тех случаях, когда возмущающие воздействия не могут быть измерены, или когда их влияние заранее неизвестно. Это обусловливается присущим замкнутым кибернетическим системам принципом выработки управляющего воздействия по отклонениям фактического значения управляемой величины от ее требуемого (заданного, расчетного, эталонного) значения независимо от причин, вызвавших указанное отклонение. Системы кибернетического регулирования, обеспечивающие реализацию заданной программы управления, имеют отрицательную обратную связь. Различают три типа основных задач регулирования: стабилизация, программное регулирование и слежение (мониторинг).

Цель стабилизации- поддержание заданного постоянного значения выходной величины объекта регулирования. Так регулирование хода производственно- коммерческого процесса может преследовать цель поддерживать постоянство выпуска (сбыта) продукции, определяемую планом (спросом). Учет результатов производства может осуществляться по отклонениям фактического выпуска от расчетного. Эта информация обратной связи поступает к логистикам, принимающим решения по устранению отклонений.

Программное регулирование- обеспечивает изменение выходной переменной объекта управления в соответствии с заданной программой. Изменение выходной переменной может быть заданно в виде функции времени или другого аргумента, например интенсивности входа объекта. Так, например, некоторые продовольственные товары поступают в торговую сеть в течении суток в соответствии с заданным графиком. Он определяет изменение интенсивности перевозок этих товаров как функции времени, а его реализация осуществляется органом управления транспортом.

Третий тип регулирования - слежение (мониторинг)- отличается тем, что здесь программа не рассчитывается заранее, а определяется поведением наблюдаемого объекта.

Основная формула теории регулирования.

Для эффективного применения кибернетического подхода в логистике очень важно сформировать мышление в понятиях и категориях регулирования обратной связи, что может помочь уяснения логики суждений при выводе основной формулы теории регулирования. Это удобно рассмотреть на анализе процесса регулирования в технике, моделируя его в форме схемы контура управления с обратной связью.

«Вход» Х «Выход» Y

∆x ∆y

Рис. 2. Контур управления с обратной связью.

В регулируемой системе H происходит преобразование состояния входа Х в состоянии выхода У, что можно обозначить Н- регулируемая система; Х=(Х1,Х2,….,Хн)- вектор входа, У=(У1,У2,….,Ун)- вектор выхода следующим образом У=НХ

Как показывает блочная схема, текущее состояние выхода У после сопоставления с эталонным или заданным его значением передается на вход регулятора Т, который преобразует его в состояние своего выхода Х*. Состояние выхода регулятора прибавляется к значению состояния выхода Х- системы Н. В конечном итоге состояние входа системы Н есть Х+Х*. Поправка на выходе системы Н зависит от состояния ее выхода У. Обозначим через У’ заданное значение, то есть желаемую норму состояния выхода регулируемой системы. Соответствующая настройка регулятора Т заключается в том, чтобы поправка Х* вызывала выравнивание всякого отклонения У* от заданного значения У и привела состояние выхода регулируемой системы и заданной норме, то есть У*=У’-У 0. Можно произвести расчет , определяющий численные показатели описанной таким образом обратной связи. Допустим в начале, что в регулируемой системе происходит прямое преобразование, состоящее в умножении состояния входа на действительное число Н, тогда У=НХ. Пропорциональное преобразование называется усилением, если Н>1, или ослаблением, если Н<1. В этих случаях системы, в которых происходит пропорциональное преобразование, называется соответственно усилителями или ослабителями.