Смекни!
smekni.com

Логистика 15 (стр. 5 из 5)

Маршрут: Г-А-Б¹-А-Б¹-А-Б²-А²-Б²-Г

Оптимальный план работы составлен.Как видим, он соответствует второму варианту

Исходные данные для решения задачи № 2.

1. АБ¹=12,5 км. V=22 км\ч.

АБ²=10 км. Tn-p=28 мин

АГ=16 км. q =2,5 т.

Б²Г=7,5 км. mБ¹ =5 т.

Б¹ Г= 8,5 км mБ²=7,5 т

Задача 2.

Исходные данные V=22км/ч Т=28 мин q=2,5tmБ1=5т. mБ2= 7,5.

АБ1=12,5; АБ2=10 км; Б2Г=7,5 Б1Г=6 км.

Таблица. Расстояния, км.

Пункт отправления и автохозяйство Автохозяйство Б1 Б2
А 16 12,5 10
Г - 6 7,5

Таблица Количество ездок.

Пункт отправления/назначения Б1 Б2
А 2 3

Учитывая, что в условии задачи не указан коэффициент. Использования грузоподъемности мы принимаем его за единицу.

Рассчитаем маршруты.

Затраты времени на одну ездку, мин.

Показатель А-Б1-А А-Б1-Г А-Б2-А А-Б2-Г
1 2 3 4 5
Время на одну ездку, мин. 30,27 29,29 28,91 29,18

Первоначально рассчитаем маршруты, для которых ездка не является последней.

Маршрут 1 (А-Б1-А) t1= (12,5+12,5)/22+28=30,27

Маршрут 3 (А-Б2-А) t3=(10+10)/22 +28= 28,91

Для маршрута, который является последней

Маршрут 2 (А-Б1-Г) t2= (12,5+16)/22+28=29,29

Маршрут 4 (А- Б2-Г) t4= (10+16)/22+28= 29,18

Рабочая матрица условий

Пункт назначения А (пункт отправления) Разности
Б1Б2 67,5 23 12,510 -6,5-2,5

Наименьшую оценку имеет пункт Б1 (-6,5), который планируется конечной точкой маршрута.

Планируем ездки в пункт с наибольшей оценкой, т.е. в Б2: 28,91∙3=86,73 и одну ездку в Б1- 30,27, так как еще один рейс пойдет по маршруту 2: 29,29 мин

Общий вариант маршрута: – Г-А-Б2-А-Б2-А-Б2-А-Б1-А-Б2-Г

Заключение.

Для решения задач в логистике широко используется математический аппарат: линейное программирование, теория очередей, имитационное моделирование, экспертные оценки, транспортные матрицы, теория управления запасами, сетевые модели, математическая оптимизация, методы прогнозирования спроса. Пример решаемых задач: размещение складских и производственных мощностей, транспортные задачи, задачи оптимального расположения цехов или отделов предприятия, задачи нормирования запасов.

Для решения задач в логистике важную роль играют условные отражения объектов действительности, с их существенными связями – модели: прогнозирования, статистические, имитационные; сетевые, транспортные, управления запасами, складирования; интегральные.

Список используемой литературы.

1.Логистика: Учебник/ Под ред. Б. А. Аникина: 2-е изд. перераб. и доп. - М.: ИНФРА - М, 2000.

2. Гаджинский А. М. Логистика: Учебник для студентов высших учебных заведений. - 9-е изд., перераб. и доп. - М.: Издательство - торговая корпорация "Дашков и Ко, 2004.

3.Основы логистики: Учеб. пособие/ Под ред. Л. Б. Миротина и В. И. Сергеева. - М.: ИНФРА - М, 2000.

4. Экологический менеджмент: Учебник для ВУЗов. / Н. Пахомова, К. Рихтер, А. Эндрес. — СПб: Питер, 2003

5. Аникин Б. А. Практикум по логистике. Учебное пособие.- М: Инфра-М, 2007