Новое понимание логических связок требует новой логики. Мы считаем утверждение А. А. Маркова о неединственности логики верным и весьма глубоким: “В самой идее неединственности логики, разумеется, нет ничего удивительного. В самом деле, с какой стати все наши рассуждения, о чем бы мы ни рассуждали, должны управляться одними и теми же законами? Для этого нет никаких оснований. Удивительным, наоборот, было бы, если бы логика была единственна”'.
В конструктивную математическую логику А. А. Марков вводит понятие “разрешимое высказывание” и связанное с ним понятие “прямое отрицание”. В логике А. А. Маркова имеется и другой вид отрицания - усиленное отрицание, относящееся к так называемым полуразрешимым высказываниям.
Кроме материальной и усиленной импликации, при становлении истинности которых приходится заботиться об истинности посылки и заключения, А. А. Марков вводит дедуктивную импликацию, определяемую по другому принципу. Дедуктивная импликация “если А, то В” выражает возможность выведения В из А по фиксированным правилам, каждое из которых в применении к верным формулам дает верные формулы. Всякое высказывание, выводимое из истинного высказывания, будет истинным. :
Через дедуктивную импликацию А. А. Марков определяет редукционное отрицание (reductioadabsurdum). Редукционное отрицание высказывания А (сформулированного в данном языке) понимается как дедуктивная импликация “если А, то Л”, где через Л обозначен абсурд. Это определение отрицания соответствует обычной практике рассуждений математика: математик отрицает то, что можно привести к абсурду. Для установление истинности редукционного отрицания высказывания не требуется вникать в его смысл. Высказывание, для которого установлена истинность редукционного отрицания, не может быть истинным.
Эти три различных понимания отрицания не вступают в конфликт друг с другом, они согласованы, что, по мнению А.А. Маркова, даст возможность объединить все эти понимания отрицания.
Показательно такое обстоятельство. А. А. Марков строит свои конструктивные логические системы для обоснования конструктивной математики таким образом, что у него получается не одна законченная система, а целая иерархия систем. Это система языков Я0, Я1, Я2, Я3,, Я4 , Я5,..., Яn (где п - натуральное число) и объемлющего их языка Яw; после Яw строится язык Яw '.
Итак, мы склонны думать, что развивающуюся конструктивную логику и математику невозможно вместить в одно формальное исчисление, для этого нужна система, состоящая из целой иерархии систем, в которой будет иерархия отрицаний.
Проблемами конструктивной логики и теории алгоритмов занимается также математик Н. М. Нагорный.
§ 5. Многозначные логики
В многозначных логиках число значений истинности аргументов и функций для высказываний может быть любым конечным (больше двух) и даже бесконечным. В настоящем параграфе используются так называемая польская запись, которую применял Лукасевич, и обычная, применяемая в двузначной логике: отрицание обозначается через Nx или
Развитие многозначных логик подтверждает мысль, что истина всегда конкретна, а также положение об относительном характере конкретно-научных знаний: то, что является тождественно-истинным в одной логической системе, не оказывается тождественно-истинным в другой.
Трехзначная система Лукасевнча
Трехзначная пропозициональная логика (логика высказываний) была построена в 1920 г. польским математиком и логиком Я. Лукасевичем (1878-1956)'. В ней “истина” обозначается 1, “ложь” - 0, “нейтрально” – 1/2.
Отрицание и импликация соответственно определяются матрицами (таблицами) так:
Импликация Лукасевича | |||
X \ y | 1 | 1/2 | 0 |
1 | 1 | 1/2 | 0 |
1/2 | 1 | l | 1/2 |
0 | 1 | l | 1 |
Отрицание Лукасевича
х | Nx |
1 | 0 |
1/2 | 1/2 |
0 | 1 |
[Nx] =1-[x]
Конъюнкция определяется как минимум значений аргументов: [Кху] = min ( [х],[у]); дизъюнкция - как максимум значений х и у[Аху]=таx([х],[у]).
Пользование таблицей для импликации Лукасевича, выраженной в форме х → у, происходит так. Слева в первой колонке написаны значений для х, а сверху - значения для у. Возьмем, например [х] = 1/2 (т. е. значение для х, равное 1/2 ), а [у] = 0, получаем импликацию 1/2→ 0. На пересечении получаем результат 1/2 .
Если в формулу входит одна переменная, как, например, в случае формулы a
Покажем, как происходит доказательство для формул a
a | | a | a ^ | |
1 | 0 | 1 | 0 | 1 |
1/2 | 1/2 | 1/2 | 1/2 | 1/2 |
0 | 1 | 1 | 0 | 1 |
Для доказательства формулы a
Теперь посмотрим, является ли законом логики формула (х → ( ^ у)) →
, содержащая две переменные х и у В таблице будет З2 = 9 строк. Распределение значений истинности для х и у показано в первой и второй колонках.
Вывод: так как в последней колонке встречается два раза значение неопределенности (т. е. 1/2), то данная формула не является законом логики.
На основе данных определений отрицания, конъюнкции и дизъюнкции Лукасевича не будут тавтологиями (законами логики) закон непротиворечия и закон исключенного третьего двузначной логики. В системе Лукасевича не являются тавтологиями и отрицания законов непротиворечия и исключенного третьего двузначной логики. Поэтому логика Лукасевича не является отрицанием двузначной логики. В логике Лукасевича тавтологиями являются: правило снятия двойного отрицания, все четыре правила де Моргана и правило контрапозиции: а → b