Смекни!
smekni.com

Нечеткие множества в системах управления (стр. 8 из 11)

A - нечеткое множество на X, описывающее ограничения (т.е. mA(x)) на значения нечеткой переменной a.

Лингвистической переменной называется набор <b ,T,X,G,M>, где

b - наименование лингвистической переменной;

Т - множество ее значений (терм-множество), представляющих собой наименования нечетких переменных, областью определения каждой из которых является множество X. Множество T называется базовым терм-множеством лингвистической переменной;

G - синтаксическая процедура, позволяющая оперировать элементами терм-множества T, в частности, генерировать новые термы (значения). Множество TÈ G(T), где G(T) - множество сгенерированных термов, называется расширенным терм-множеством лингвистической переменной;

М - семантическая процедура, позволяющая превратить каждое новое значение лингвистической переменной, образуемое процедурой G, в нечеткую переменную, т.е. сформировать соответствующее нечеткое множество.

Замечание. Чтобы избежать большого количества символов

символ b используют как для названия самой переменной, так и для всех ее значений;

пользуются одним и тем же символом для обозначения нечеткого множества и его названия, например терм "молодой", являющийся значением лингвистической переменной b = "возраст", одновременно есть и нечеткое множество М ("молодой").

Присвоение нескольких значений символам предполагает, что контекст позволяет разрешить возможные неопределенности.

Пример: Пусть эксперт определяет толщину выпускаемого изделия с помощью понятий "малая толщина", "средняя толщина" и "большая толщина", при этом минимальная толщина равна 10 мм, а максимальная - 80 мм.

Формализация такого описания может быть проведена с помощью следующей лингвистической переменной <b, T, X, G, M>, где

b - толщина изделия;

T - {"малая толщина", "средняя толщина", "большая толщина"};

X - [10, 80];

G - процедура образования новых термов с помощью связок "и", "или" и модификаторов типа "очень", "не", "слегка" и др. Например: "малая или средняя толщина", "очень малая толщина" и др.;

М - процедура задания на X = [10, 80] нечетких подмножеств А1="малая толщина", А2 = "средняя толщина", А3="большая толщина", а также нечетких множеств для термов из G(T) в соответствии с правилами трансляции нечетких связок и модификаторов "и", "или", "не", "очень", "слегка" и др. операции над нечеткими множествами вида: А Ç В, АÈ В,

, CON А = А2 , DIL А = А0,5 и др.

Замечание. Наряду с рассмотренными выше базовыми значениями лингвистической переменной "толщина" (Т={"малая толщина", "средняя толщина", "большая толщина"}) возможны значения, зависящие от области определения Х. В данном случае значения лингвистической переменной "толщина изделия" могут быть определены как "около 20 мм", "около 50 мм", "около 70 мм", т.е. в виде нечетких чисел.

Продолжение примера:

Функции принадлежности нечетких множеств:

"малая толщина" = А1 , "средняя толщина"= А2, " большая толщина"= А3 .

Функция принадлежности:

нечеткое множество "малая или средняя толщина" = А1ÈА1.

Нечеткие числа

Нечеткие числа - нечеткие переменные, определенные на числовой оси, т.е. нечеткое число определяется как нечеткое множество А на множестве действительных чисел R с функцией принадлежности mA(x)Î[0,1], где x - действительное число, т.е. xÎR.

Нечеткое число А нормально, если

mA(x)=1, выпуклое, если для любых x£y£z выполняется

mA(x)³mA(y)LmA(z).

Множество a - уровня нечеткого числа А определяется как

Аa = {x/mA(x)³a}.

Подмножество SAÌR называется носителем нечеткого числа А, если

S = {x/mA(x)>0}.

Нечеткое число А унимодально, если условие mA(x) = 1 справедливо только для одной точки действительной оси.

Выпуклое нечеткое число А называется нечетким нулем, если

mA(0) =

(mA(x)).

Нечеткое число А положительно, если "xÎSA, x>0

и отрицательно, если "xÎSA, x<0.

Операции над нечеткими числами

Расширенные бинарные арифметические операции (сложение, умножение и пр.) для нечетких чисел определяются через соответствующие операции для четких чисел с использованием принципа обобщения следующим образом.

Пусть А и В - нечеткие числа, и

- нечеткая операция, соответствующая операции
над обычными числами. Тогда

С = А

B ÛmC(z)=
(mA(x)LmB(y))).

Отсюда:

С =

ÛmC(z)=
(mA(x)LmB(y))),

С =

ÛmC(z)=
(mA(x)LmB(y))),

С =

ÛmC(z)=
(mA(x)LmB(y))),

С =

ÛmC(z)=
(mA(x)LmB(y))),

С =

ÛmC(z)=
(mA(x)LmB(y))),

С =

ÛmC(z)=
(mA(x)LmB(y))).

Нечеткие числа (L-R)-типа

Нечеткие числа (L-R)-типа - это разновидность нечетких чисел специального вида, т.е. задаваемых по определенным правилам с целью снижения объема вычислений при операциях над ними.

Функции принадлежности нечетких чисел (L-R)-типа задаются с помощью невозрастающих на множестве неотрицательных действительных чисел функций действительного переменного L(x) и R(x), удовлетворяющих свойствам:

а) L(-x)=L(x), R(-x)=R(x);

б) L(0)=R(0).

Очевидно, что к классу (L-R) функций относятся функции, графики которых имеют следующий вид:

Примерами аналитического задания (L-R) функций могут быть

L(x) =

, p³0;

R(x)=

, p³ 0 и т.д.

Пусть L(y) и R(y) - функции (L-R)-типа (конкретные). Унимодальное нечеткое число А с модойа (т.е. mA(a)=1) c помощью L(y) и R(y) задается следующим образом:

mA(x) =

где а - мода; a>0, b>0 - левый и правый коэффициенты нечеткости.

Таким образом, при заданных L(y) и R(y) нечеткое число (унимодальное) задается тройкой А = (а, a, b).

Толерантное нечеткое число задается, соответственно, четверкой параметров А=(а1, a2, a, b), где а1 и a2 - границы толерантности, т.е. в промежутке [а1,a2] значение функции принадлежности равно 1.

Примеры графиков функций принадлежности нечетких чисел (L-R)-типа приведены ниже.

Мы не будем здесь рассматривать операции над (L-R) числами; отметим, что в конкретных ситуациях функции L(y), R(y), а также параметры a, b нечетких чисел (а, a, b) и (а1, a2, a, b ) должны подбираться таким образом, чтобы результат операции (сложения, вычитания, деления и т.д.) был точно или приблизительно равен нечеткому числу с теми же L(y) и R(y), а параметры a¢ и b¢ результата не выходили за рамки ограничений на эти параметры для исходных нечетких чисел, особенно если результат в дальнейшем будет участвовать в операциях.

Замечание. Решение задач математического моделирования сложных систем с применением аппарата нечетких множеств требует выполнения большого объема операций над разного рода лингвистическими и другими нечеткими переменными. Для удобства исполнения операций, а также для ввода-вывода и хранения данных, желательно работать с функциями принадлежности стандартного вида.