Смекни!
smekni.com

Логика. Формальная или диалектическая? (стр. 2 из 10)

Таким образом, сумма площадей квадратов, построенных на кате­тах (на чертеже 2 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырех равных треугольников, а площадь квадрата, построенного на гипотенузе (на чертеже 3 этот квадрат тоже заштрихован), равна площади квадрата М'К'О'Р', рав­ного квадрату МКОР, без суммы площадей четырех таких же треуго­льников. Следовательно, площадь квадрата, построенного на гипоте­нузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на катетах.

Получаем формулу с2 = а2 + b2, где с - гипотенуза, а и b - катеты прямоугольного треугольника.

Теорему Пифагора кратко принято формулировать так:

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов"[10.115-116].

Доказательство теоремы Пифагора является одним из тех шедев­ров гения человечества, который своей простотой, красотой обвора­живает сердце и ум, приводит в экстаз восхищения. Такие шедевры притягательны не тем, что открывают, а, наоборот, что обнаружива­ют до осязания загадочность гениальности самой по себе и именно эта загадочность гениальности вновь и вновь манит к себе, будора­жит, пьянит.

С анализа доказательства теоремы Пифагора мы и начнем непос­редственно, конкретно убеждаться, видеть (see - видеть, понимать) правоту гения Гегеля, что вещи подчиняются логике Гегеля, вернее, наоборот, что логика Гегеля следует за развитием вещей.

До сих пор математики убеждены, что их открытия, доказатель­ства, или доказательство открытий, опирается на основные законы формальной логики, или исходят из них как из принципа, "само(го) достоверно(го) из всех начал"[8.125]. Но это убеждение математи­ков на деле является их с у щ е с т в е н н ы м з а б л у ж д е­ н и е м. При доказательстве или решении они (математики, ученые) незаметно для всех, в том числе и для себя, позволяют себе ""пе­рейти границу""[9.231], т. е. непременно нарушают категорический запрет формальной логики, взрывают ее принцип. "Они не сознают этого, но они это делают"[11.84].

Еще раз внимательно рассматриваем математическое доказатель­ство теоремы Пифагора и анализируем его, мы на конкретном окуна­емся в "бесконечный процесс раскрытия новых сторон, отноше­ний etc... бесконечный процесс углубления познания человеком ве­щи, явлений, процессов и т. д. от явлений к сущности и от менее глубокой к более глубокой сущности"[9.203].

Мы не сомневаемся в доказательстве теоремы Пифагора и его вы­воде, что квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Мы категорически, существенно не соглас­ны с тем, что математическое доказательство теоремы Пифагора опи­рается на основные законы формальной логики. В этом суть! Мы сом­неваемся в последовательности хода доказательства ( и не только теоремы Пифагора) математиков. Они скрыли, утаили от нас мелочь, но мелочь существенную, точнее, они скрали, скостили от нас (и более всего от себя) существенный отрезок доказательства (факти­чески упустили суть дела).

Вопрос первый:

Откуда у математиков появились "два квадрата МКОР и М'К'О'Р'" [10.115] (черт. 2 и 3), или какова природа этих двух квадратов, что нас вынуждает их строить?

Вопрос второй:

И почему вдруг(!), неожиданно, мимоходом сообщается, что ква­драты МКОР и М'К'О'Р' "равн(ы)"[10.115]?

Откуда взялось равенство квадратов МКОР и М'К'О'Р'?

Ответ математика на последний наш вопрос:

"...Сумма площадей квадратов, построенных на катетах (на чер­теже 2 эти квадраты заштрихованы), равна площади квадрата МКОР без суммы площадей четырех равных треугольников, а площадь квад­рата, построенного на гипотенузе ( на чертеже 3 этот квадрат тоже заштрихован), равна площади квадрата М'К'О'Р', равного квадрату МКОР..."[10.116].

Стоп!

А откуда равенство квадратов М'K'О'P' и МКОР?

Мы никогда не выйдем из этого круговращения нашего вопроса и ответа математика, если полностью доверимся только доказательству математика. Еще ни один математик не задавался этим вопросом, для него и так "легко видеть".

Если математику "легко видеть" с2 = а2 + b2, то пусть нам ука­жет, объяснит откуда у него в доказательстве вынырнуло равенство квадратов М'К'О'P' и МКОР, и, вообще, какова природа этих квадра­тов. "Кстати. Гегель неоднократно подсмеивался... над словом (и понятием) еrklaren, объяснение, должно быть противопологая мета­физическому решению раз и навсегда ("объяснили"!!) вечный процесс познания глубже и глубже"[9.115].

Ведь ни в условии, ни в выводе математик нам не указывает на неведомо откуда взявшее равенство квадратов М'К'О'Р' и МКОР, тем более о природе этих квадратов. Равенство этих квадратов в дока­зательстве математика вынырнуло ниоткуда, так, мимоходом, вдруг и невзначай, мгновенно, раньше условия и вывода.

Чудо!

И все же как, откуда явилось чудное равенство?

А какова природа теоремы Пифагора?

"Так называемая теорема Пифагора была известна не только для частных случаев, но и в полной общности"[12.43].

Выходит, Пифагор заранее знал вывод, он исходит из вывода, а не идет к нему от неизвестного.

Тогда в чем сущность гения Пифагора?

Как Пифагор шел к своему открытию и какова сущность этого от­крытия?

Посмотрите на разные квадраты с2, а2 и b2 в их разрозненном виде. Мож­но ли при этом видеть, уверенно утверждать, что с2 = а2 + b2 ?

Нет!

Но ведь из практики наверняка известно, что с2 = а2 + b2!!

Категорический ответ Аристотеля:

"Невозможно, чтобы противоположности были в одно и то же время присущи одному и тому же..."[8.125].

Тогда выходит, что Пифагор взялся за невозможное.

Так как же Пифагору удалось преодолеть невозможное, схватить единое во многом и многое в одном?

Если уже из практики было известно, что с2 = а2 + b2, то площадь квадрата построенного на гипотенузе (с), должна совпасть, слить­ся воедино с суммой площадей построенными на катетах (а и b ).

Чтобы это было более наглядно, мы все эти квадраты (черт.1) вырежем, отсоединим друг от друга, а затем непосредственно нало­жим их друг на друга, так как "вообще две какие-нибудь геометри­ческие фигуры считаются равными, если они при наложении могут быть вполне совмещены"[13.48].

И что мы увидим при этом?

Все, что угодно, только не равенство, не совмещение, не сли­яние этих квадратов, т.е. не увидим, что с2 = а2 + b2 .

Возможно ли вообще соединить, наложить друг на друга эти (вы­резанные) такие различные квадраты непосредственно, чтобы они слились воедино?

Нет!

Почему?

"...В таком случае было бы необходимо, чтобы два тела занима­ли одно и то же место..."[8.106], а "находиться в одном и том же месте два тела не могут..."[8.321].

Но ведь с2 = а2 + b2 !

Они, эти квадраты, должны совпасть!

Как же увидеть, как же осуществить непосредственное слияние, единство различных квадратов!?

Вместо двух квадратов МКОР и М'К'О'Р' начертим и вырежем (из любого плоского материала) один квадрат МКОР. Затем поочередно на него (или в него, если это ниша) наложим квадраты, построенные на сторонах катетов, уберем, а затем вместо них наложим квадрат, по­строенный на стороне гипотенузы.

Мы получили то же самое, что и математики, т. е. дважды одно и то же, только математики шли от двух квадратов, неведомо откуда взявших (МКОР и М'К'О'Р'), к их (и тоже неожиданному) равенству, мы же, наоборот, шли от одного квадрата (МКОР) к двум (МКОР и М'К'О'Р') равным.

Фактически здесь не играет роли, как мы идем, от двух квадра­тов (МКОР и М'К'О'Р') как математики, или от одного квадрата (МКОР), но дважды в него (или на него) вкладываем поочередно ква­драты: с2 и затем а2 + b2 , и они нам дают одно и то же (а именно четыре равных треугольника аbс).

Но...

Вырежьте (из бумаги или картона, или из любого плоского мате­риала) квадраты a2 , b2,с2, МКОР и четыре равных треугольника, равных треугольнику аbс, продемонстрируйте перед аудиторией, вкладывая поочередно в (или на) квадрат МКОР квадраты а2 + b2, за­тем квадрат с2 , соответственно ситуации, меняя места расположения четырех равных треугольников в квадрате МКОР. Заметно большее чи­сло человек увидит, схватит, что с2 = а2 + b2, чем когда мы доказы­ваем теорему Пифагора, идя от двух квадратов МКОР и М'К'О'Р'.

Мы действительно добились большей ясности, очевидности в до­казательстве теоремы Пифагора, идя сразу от единства (одного ква­драта МКОР) к его раздвоению (МКОР и М'К'О'Р'), нежели от двух к одному.

Но смогли ли мы при этом в действительности, или, точнее, не­посредственно соединить, слить воедино квадраты а2 + b2 и с2 ?

Нет!

Всякий раз, при демонстрации доказательства теоремы Пифагора, мы вынуждены были необходимостью д в а ж д ы пользоваться квад­ратом МКОР, первый раз накладывая на него сумму квадратов а2 + b2 , второй раз накладывая на него квадрат с2.

Почему д в а ж д ы?

Потому что "невозможно, чтобы два тела (вырезанные квадраты а2 + b2 и с2 . Авт.) находились в одно и то же время в одном и том же месте"[11.409].

Тогда как испытуемые (все мы!) убеждаются в том, что квадрат c2 сливается с суммой квадратов а2 + b2, если нет возможности о д ­н о в р е м е н н о поместить "в одном и том же месте... два те­ла"[20.409], как бы мы не увеличивали скорость поочередного нак­ладывания квадратов с2 и а2 + b2 на квадрат МКОР?