Смекни!
smekni.com

Законы логики (стр. 4 из 4)

или

А или В; неверно В - А

Другая форма записи:

А или В. Не-А. Следовательно, В.

А или В. Не-В. Следовательно, А.

Например:

Множество является конечным или оно бесконечною..
Множество бесконечно.

Средневековые логики называли утверждающе-отрицающий модус модусом понендо толленс,
а отрицающе-утверждающий модус модусом толлендо поненс.

Конструктивная и деструктивная дилеммы

Дилеммами называются рассуждения, посылками которых являются по меньшей мере два условных высказывания (высказывания с «если, то») и одно разделительное высказывание (высказывание с «или»).

Выделяются следующие разновидности дилеммы.

Простая конструктивная (утверждающая) дилемма:

Если А, то С.

Если В, то С.

А или В. - С

Например: «Если прочту детектив Агаты Кристи, то хорошо проведу вечер; если прочту детектив Жоржа Сименона, тоже хорошо проведу вечер; прочту детектив Кристи или прочту детектив Сименона; значит, хорошо проведу вечер».

Рассуждение этого типа в математике принято называть доказательством по случаям. Однако число случаев, перебираемых последовательно в математическом доказательстве, обычно превышает два, так что дилемма приобретает вид:

Если бы было справедливо первое допущение, теорема была бы верна;

при справедливости второго допущения теорема также была бы верна;

при верном третьем допущении теорема верна;

если верно четвертое допущение, теорема верна;

справедливо или первое, или второе, или третье, или четвертое допущение.

Значит,-теорема верна.

Сложная конструктивная дилемма:

Если А, то В.

Если С, то Д.

А или С.

В или Д.

Например: «Если будет дождь, мы пойдем в кино; если будет холодно, пойдем в театр; будет дождь или будет холодно; следовательно, мы пойдем в кино или пойдем в театр».

Простая деструктивная (отрицающая) дилемма:

Если А, то В.

Если А, то С.

Неверно В или неверно С.

Неверно А.

Например: «Если число делится на 6, то оно делится на 3; если число делится на 6, то оно делится на 2;

рассматриваемое число не делится на 2 или не делится на 3; следовательно, число не делится на 6».

Сложная деструктивная дилемма:

Если А, то В.

Если С, то Д.

Не-В или не-Д.

Не-А или не-С.

Например: «Если поеду на север, то попаду в Тверь; если поеду на юг, то попаду в Тулу; но не буду в Твери или не буду в Туле; следовательно, не поеду на север или не поеду на юг».

Закон Клавия

Этот закон можно передать так: если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным. Или, короче: высказывание, вытекающее из своего собственного отрицания, истинно.

Если неверно, что А. то А. - А

Например: если условием того, чтобы машина не работала, является ее работа, то машина работает.

Закон назван именем Клавия — ученого-иезуита, жившего в XVI в., одного из создателей григорианского календаря. Клавий обратил внимание на этот закон в своем комментарии к «Началам» Евклида. Одну из своих теорем Евклид доказал из допущения, что она является ложной.

Закон Клавия лежит в основе рекомендации, касающейся доказательства: если хочешь доказать А, выводи А из допущения, что верным является не-А. Например, нужно доказать утверждение «Трапеция имеет четыре стороны». Отрицание этого утверждения: «Неверно, что трапеция имеет четыре стороны». Если из этого отрицания удается вывести утверждение, то последнее будет истинно.

В романе И.С.Тургенева «Рудин» есть такой диалог:

— Стало быть, по-вашему, убеждений нет?

— Нет — и не существует.

— Это ваше убеждение?

— Да.

— Как же вы говорите, что их нет? Вот вам уже одно на первый случай.

Ошибочному мнению, что никаких убеждений нет, противопоставляется его отрицание: есть по меньшей мере одно убеждение, а именно убеждение, что убеждений нет. Отсюда следует, что убеждения существуют.

К закону Клавия близок по своей логической структуре другой закон, отвечающий этой же общей схеме: если из утверждения вытекает его отрицание, то последнее истинно. Например, если условием того, что поезд прибудет вовремя, будет его опоздание, то поезд опоздает. Схема этого рассуждения такова:

Если А, то не-А.

Не-А.

Эту схему однажды использовал древнегреческий философ Демокрит в споре с софистом Протагором. Последний утверждал: «Истинно все то, что кому-либо приходит в голову». На это Демокрит ответил, что из положения «Каждое высказывание истинно» вытекает истинность и его отрицания: «Не все высказывания истинны». И, значит, это отрицание, а не положение Протагора на самом деле истинно.

Практическое задание

Дать логическую характеристику понятиям:

· Государство – простое, положительное, конкретное, общее, безотносительное.

· Западные границы государства – простое, положительное, абстрактное, общее, соотносительное.

· Невиновность – простое, отрицательное, абстрактное, общее, безотносительное.

· Учитель – простое, положительное, конкретное, общее, соотносительное.

· Демонтаж – простое, отрицательное, абстрактное, общее, безотносительное

· Законность– простое, положительное, абстрактное, общее, безотносительное.

· Кража – простое, положительное, абстрактное, общее, безотносительное.

· Бескорыстие – простое, отрицательное, абстрактное, общее, безотносительное.

· Отечество – простое, положительное, абстрактное, единичное, относительное

· Министерство Юстиции – простое, положительное, конкретное, общее, безотносительное.

Список литературы

1. Войшвилло Е.К., Дегтярев М.Г. Логика с элементами эпистемологии и научной методологии. Учебник.-М.:Интерпракс. 1994.-448 с.

2. Казаков А.Н.., Якушев А.О. Логика-I. Парадоксология: пособие для учащихся старших классов лицеев, колледжей и гимназий.-М.:АО «Аспект Пресс».1994.-256 с.

3. Классическая логика: учебное пособие.-М.Гуманитарный издательский центр ВЛАДОС.1996.-192 с.

4. Кумпф Ф., Оруджев З. Диалектическая логика: основные принципы и проблемы.-М.: Политиздат. 1979.-286 с.

5. Логика: пособие для учащихся.-М.:Просвещение.1996.-206 с.