Составляем таблицу значений плотности вероятности для четырех
от среднего значения M(таблица 5.2).Таблица 5.2- Расчёт значений f(l) овсюга
Отклонение | f( ) | f(l)= f( )/δ |
0,00 | 0,3989 | 0,7978 |
0,75 | 0,3011 | 0,6022 |
1,50 | 0,1295 | 0,2590 |
2,25 | 0,0317 | 0,0634 |
3,00 | 0,0044 | 0,0088 |
Построим кривую нормального распределения семян вика по аэродинамическим свойствам, если известно, что M=11,9 мм и δ=1,66.
Минимальная и максимальная по аэродинамическим свойствам семян:
Составляем таблицу значений плотности вероятности для четырех
от среднего значения M(таблица 5.3).Таблица 5.3- Расчёт значений f(l) вика
Отклонение | f( ) | f(l)= f( )/δ |
0,00 | 0,3989 | 0,2403 |
0,75 | 0,3011 | 0,1814 |
1,50 | 0,1295 | 0,0780 |
2,25 | 0,0317 | 0,0191 |
3,00 | 0,0044 | 0,0027 |
Построим кривую нормального распределения семян щирица по аэродинамическим свойствам, если известно, что M=4,75 мм и δ=0,55.
Минимальная и максимальная по аэродинамическим свойствам семян:
Составляем таблицу значений плотности вероятности для четырех
от среднего значения M(таблица 5.4).Таблица 5.4- Расчёт значений f(l) щирица
Отклонение | f( ) | f(l)= f( )/δ |
0,00 | 0,3989 | 0,7253 |
0,75 | 0,3011 | 0,5475 |
1,50 | 0,1295 | 0,2355 |
2,25 | 0,0317 | 0,0576 |
3,00 | 0,0044 | 0,0080 |
Построим кривую нормального распределения семян горец вьюнковый по аэродинамическим свойствам, если известно, что M=4 мм и δ=0,4.
Минимальная и максимальная толщина семян:
Составляем таблицу значений плотности вероятности для четырех
от среднего значения M(таблица 5.5).Таблица 5.5- Расчёт значений f(l) горец вьюнковый
Отклонение | f( ) | f(l)= f( )/δ |
0,00 | 0,3989 | 0,9973 |
0,75 | 0,3011 | 0,7528 |
1,50 | 0,1295 | 0,3238 |
2,25 | 0,0317 | 0,0793 |
3,00 | 0,0044 | 0,0110 |
При расчёте результатов необходимо определить количество семян, у которых величина показателя физико-математических свойств ограничена определенными условиями (требования ГОСТа, потери семян в отходы или количество примесей в основном материале).
Примечание. Под кривой распределения любой культуры находится 10000 зёрен. (по 5000 штук влево и вправо от M). Это не зависит от процента семян в смеси.
РАСЧЁТ КОЛИЧЕСТВА СЕМЯН ПРИМЕСЕЙ, ВЫДЕЛЕННЫХ РАБОЧИМ ОРГАНОМ
Имеем культуру с параметрами M=3,6 мм и δ=0,54мм. Рассчитаем, сколько зерен находиться по толщине семян до размера t=1,98.
По формуле определяем
(6)По таблице значений нормального интеграла находим значение αн=3. αн=3 соответствует 4987.Так как половина кривой распределения (M=3,6) соответствует 10000/2=5000 шт. зерен, то с толщиной 1,98 будет 5000-4987=13 зерен.
Аналогично для границы второго класса t2=4,42 будем иметь
По таблице значений нормального интеграла находим значение αн=1,50 соответствует 4332, а оставшиеся 0,02 умножаем на число в строке «дифференция для 0,01», что соответствует 2×12=24 шт. Таким образом, числу, αн=1,52 соответствует нормальный интеграл Ф2=4332+24=4356 шт.
Определяем количество зерен в классовом промежутке от 1,98 до 4,42 мм.
∆Ф=Ф1-Ф2= 13+4356=4369 зерен.
При определении количества зерен в классовом промежутке, включающем M, сначала находим количество зерен с левой стороны, затем с правой и суммируем результаты. Мы выделим 631 зерен из 10000.
Из этого следует что 10000 – 3% 4356 –A% , тогда получаем
Имеем культуру с параметрами M= 2,10 и δ=0,30. Рассчитаем, сколько зерен находиться по толщине семян до размера t=2,08.
По формуле определяем
По таблице значений нормального интеграла находим значение αн=0,05 соответствует 199, а оставшиеся 0,02 умножаем на число в строке «дифференция для 0,01», что соответствует 2×40=80 шт. Таким образом, числу, αн=0,07 соответствует нормальный интеграл Ф2=199+80=279 шт.
Определяем количество зерен.
∆Ф=Ф1-Ф2= 5000-279=4721 зерен.
При определении количества зерен в классовом промежутке, включающем M, сначала находим количество зерен с левой стороны, затем с правой и суммируем результаты. Мы выделим 4721 зерен из 10000.
Из этого следует что 10000 – 2% 4721 –A% , тогда получаем
Имеем культуру с параметрами M= 2,10 и δ=0,21. Рассчитаем, сколько зерен находиться по толщине семян до размера t=2,08.
По формуле определяем
По таблице значений нормального интеграла находим значение αн=0,05 соответствует 199, а оставшиеся 0,04 умножаем на число в строке «дифференция для 0,01», что соответствует 4×40=160 шт. Таким образом, числу, αн=0,09 соответствует нормальный интеграл Ф1=199+160=359 шт. Так как половина кривой распределения (M=2,10) соответствует 10000/2=5000 шт. зерен, то с толщиной 2,08 будет 5000-359=4641 зерен.
Определяем количество зерен.
∆Ф=Ф1-Ф2= 5000-359=4641 зерен.
При определении количества зерен в классовом промежутке, включающем M, сначала находим количество зерен с левой стороны, затем с правой и суммируем результаты. Мы выделим 6 зерен из 10000.
Из этого следует что 10000 – 5% 4641 –A% , тогда получаем
Теперь подсчитаем технологический эффект разделения (E) по толщине.
Расчёты производим по следующей формуле
(7)где A2 ,A3 ,A4 ,A5 - процентное содержание семян сорняков, которое мы можем выделить из основной культуры, не теряя ее в отходы.
B2 ,B3 ,B4 ,B5 - процентное содержание примесей, которое было до разделения(дано из задания).
2) Имеем культуру с параметрами M=2,30 мм и δ=0,35 мм. Рассчитаем, сколько зерен находиться по ширине семян до размера t=1,25.
По формуле определяем
По таблице значений нормального интеграла находим значение αн=3. αн=3 соответствует 4987.Так как половина кривой распределения (M=2,30) соответствует 10000/2=5000 шт. зерен, то с толщиной 1,25 будет 5000-4987=13 зерен.
Аналогично для границы второго класса t2=2,95 будем иметь
По таблице значений нормального интеграла находим значение αн=1,85 соответствует 4678, а оставшиеся 0,01 умножаем на число в строке «дифференция для 0,01», что соответствует 1×7=7 шт. Таким образом, числу, αн=1,86 соответствует нормальный интеграл Ф2=4678+7=4685 шт. Так как половина кривой распределения (M=2,30) соответствует 10000/2=5000 шт. зерен, то с толщиной 2,95 будет 5000-4685=315 зерен.
Определяем количество зерен.