Смекни!
smekni.com

Кореляційний аналіз виробництва льоноволокна (стр. 5 из 9)

Ознака «Якість льонотрести»

Номер інтервалу
1 0,603125 16
2 0,855 6
3 0 0
4 1,353333 3

Отже,

Ознака «Витрати праці на 1 центнер трести»:

Номер інтервалу
1 2,823333 9
2 4,632222 9
3 6,996667 6
4 10,38 1

Отже,

Розраховані вибіркові середні досліджуваних ознак є точковими оцінками генеральних середніх відповідних ознак.

Розрахуємо вибіркові дисперсії досліджуваних ознак:

Розрахуємо середні квадратичні відхилння досліджуваних ознак:

Розрахуємо точкові незміщені оцінки дисперсій генеральної сукупності.

Розрахуємо незміщені середні квадратичні відхилння досліджуваних ознак:

Вважаючи, що надані дані є 5% вибіркою, розрахуємо інтервальні оцінки показників.

Середні похибки вибірки:

Граничні похибки вибірки при довірчій ймовірності 0,997:

Отже, довірчі інтервали для генеральних середніх:

Розрахуємо коефіцієнти варіації:

Ознака «Урожайність льоноволокна»:

- свідчить про неоднорідність досліджуваної сукупності

Ознака «Якість льонотрести»

- свідчить про однорідність досліджуваної сукупності

Ознака «Витрати праці на 1 центнер трести»:

- свідчить про неоднорідність досліджуваної сукупності

Розрахуємо структурі середні – моду та медіану кожної ознаки.

Медіана (Ме) - це величина, яка відповідає варіанту, що знаходиться в середині ранжируваного ряду.

Модою (Мо-пермалой) називають значення ознаки, яке зустрічається найчастіше у одиниць сукупності. Для дискретного ряду модою буде варіант з найбільшою частотою.

Ознака «Урожайність льоноволокна»:

Ознака «Якість льонотрести»


Ознака «Витрати праці на 1 центнер трести»:

Цей ряд розподілу є двомодальним.

2.3 Перевірка статистичної гіпотези про відповідність емпіричного ряду розподілу нормальному

Основною метою аналізу варіаційних рядів є виявлення закономірності розподілу, виключаючи при цьому вплив випадкових для даного розподілу чинників. Цього можна досягти, якщо збільшувати об'єм досліджуваної сукупності і одночасно зменшувати інтервал ряду. При спробі зображення цих даних графічно ми отримаємо деяку плавну криву лінію, яка для полігону частот буде деякою межею. Цю лінію називають кривою розподіли.

Іншими словами, крива розподілу є графічне зображення у вигляді безперервної лінії зміни частот у варіаційному ряду, яке функціонально пов'язане із зміною варіант. Крива розподілу відображає закономірність зміни частот за відсутності випадкових чинників. Графічне зображення полегшує аналіз рядів розподілу.

Відомо достатньо багато форм кривих розподіли, по яких може вирівнюватися варіаційний ряд, але в практиці статистичних досліджень найчастіше використовуються такі форми, як нормальний розподіл і розподіл Пуассона.

Нормальний розподіл залежить від двох параметрів: середньою арифметичною

і середнього квадратичного відхилення
. Його крива виражається рівнянням

Якщо потрібно отримати теоретичні частоти f' при вирівнюванні варіаційного ряду по кривій нормального розподілу, то можна скористатися формулою:

За допомогою цієї формули ми отримуємо теоретичний (імовірнісне) розподіл, замінюючи ним емпіричний (фактичне) розподіл, по характеру вони не повинні відрізнятися один від одного.

Порівнюючи отримані величини теоретичних частот n* з емпіричними (фактичними) частотами n, переконуємося, що їх розбіжності можуть бути вельми невеликі.

Об'єктивна характеристика відповідності теоретичних і емпіричних частот може бути отримана за допомогою спеціальних статистичних показників, які називають критеріями згоди.

Для оцінки близькості емпіричних і теоретичних частот застосовуються критерій згоди Пірсону, критерій згоди Романовського, критерій згоди Колмогорова.

Найбільш поширеним є критерій згоди К. Пірсона

, який можна представити як суму відносин квадратів розбіжностей між n* і n до теоретичних частот:

Обчислене значення критерію

необхідно порівняти з табличним (критичним) значенням
. Табличне значення визначається по спеціальній таблиці, воно залежить від прийнятої вірогідності Р і числа мір свободи до (при цьому до = m - 3, де m - число груп у ряді розподілу для нормального розподілу). При розрахунку критерію згоди Пірсону повинна дотримуватися наступна умова: достатньо великим повинне бути число спостережень (n
50), при цьому якщо в деяких інтервалах теоретичні частоти < 5, то інтервали об'єднують для умови > 5.

Якщо

, то розбіжності між емпіричними і теоретичними частотами розподілу можуть бути випадковими і припущення про близькість емпіричного розподілу до нормального не може бути спростована.

Перевіримо статистичну гіпотезу про відповідність статистичного розподілу за ознакою «Урожайність льоноволокну» нормальному закону розподілу.

Номер інтервалу
1 4,89 10 5,337562
2 7,166667 6 8,373766
3 9,433333 3 7,076648
4 12 6 2,782567

Критичнее значення критерія Пірсона при рівні значущості 0,058 та ступені свободи

дорівнює 3,84

Оскільки розраховане значення критерію Персона більше за критичне, то розбіжності між емпіричними і теоретичними частотами розподілу не можуть бути випадковими і припущення про близькість емпіричного розподілу до нормального повинна бути спростоване.

Отже,

Перевіримо статистичну гіпотезу про відповідність статистичного розподілу за ознакою «Якість льонотрести» нормальному закону розподілу.

Номер інтервалу
1 0,603125 16 8,020999
2 0,855 6 8,833321
3 0 0 0,102868
4 1,353333 3 0,537173