Смекни!
smekni.com

Кореляційний аналіз виробництва льоноволокна (стр. 4 из 9)

Визначаємо відносні частоти статистичних одиниць, які потрапляють у кожний інтервал розподілу:


Будуємо гістограму ряду розподілу:

Будуємо полігон ряду розподілу:

Будуємо кумуляту ряду розподілу:

Виконаємо комбінаційне групування за ознаками «Урожайність льоноволокна» та «Якість льонотрести»:

Урожайність льоноволокна, ц/га Якість льонотрести, номер Разом
0,5-0,74 0,74-0,98 0,98-1,22 1,22-1,46
3,7-6,15 10 10
6,15-8,6 6 6
8,6-11,05 3 2 5
11,05-13,7 2 2 4
Разом 13 8 2 2

Аналіз комбінаційного групування вказує на існування прямого зв’язку між урожайністю льоноволокна та якістю льонотрести.

Виконаємо комбінаційне групування за ознаками «Урожайність льоноволокна» та «Витрати праці на 1 центнер трести, люд/год»:

Урожайність льоноволокна, ц/га Витрати праці на 1 центнер трести, люд/год Разом
1,43-3,67 3,67-5,91 5,91-8,15 8,15-10,38
3,7-6,15 3 4 3 10
6,15-8,6 2 2 2 6
8,6-11,05 2 2 1 5
11,05-13,7 2 1 1 4
Разом 9 9 6 1

Аналіз комбінаційного групування вказує на відсутність прямого зв’язку між урожайністю льоноволокна та витратами праці на 1 центнер трести.

Виконаємо комбінаційне групування за ознаками «Якість льонотрести» та «Витрати праці на 1 центнер трести»:

Якість льонотрести, номер Витрати праці на 1 центнер трести, люд/год Разом
1,43-3,67 3,67-5,91 5,91-8,15 8,15-10,38
0,5-0,74 6 6 2 14
0,74-0,98 2 1 4 1 8
0,98-1,22 0
1,22-1,46 3 3
Разом 8 10 6 1

Аналіз комбінаційного групування вказує на наявність певного прямого зв’язку між якістю льонотрести та витратами праці на 1 центнер трести.

2.2 Статистична оцінка показників вибіркової і генеральної сукупності

Вибірковим називається таке статистичне дослідження, при якому узагальнювальні показники сукупності, що вивчається, встановлюються по деякій її частині, сформованій на основі положень випадкового відбору.

У основі вибіркового дослідження лежить несуцільне спостереження, при якому обстежуються не всі одиниці сукупності, а лише певна їх частина.

Вибіркове дослідження широко застосовується на практиці, оскільки володіє істотними перевагами в порівнянні з іншими методами отримання статистичних даних. До них відносяться:

· Достатньо висока точність результатів обстеження завдяки використанню більш кваліфікованих кадрів, що приводить до скорочення помилок реєстрації;

· Економія часу і засобів в результаті скорочення об'єму роботи, велика оперативність в отриманні даних про результати обстеження;

· Можливість дослідження дуже великих статистичних совокупностей;

· Вибірковий метод є єдино можливим, якщо збір інформації пов'язаний з руйнуванням або втратою одиниць спостереження, наприклад, при органалітічеськом контролі якості продукції;

· Можливість дослідження повністю недоступних совокупностей. При вибірковому дослідженні вивчається порівняно невелика частина статистичної сукупності (5-10%, рідше 20-25% об'єму її одиниць).

Проведення вибіркового дослідження є достатньо складним процесом, виконання якого включає:

· обгрунтування доцільності застосування вибіркового методу в даному дослідженні;

· складання програми дослідження;

· встановлення об'єму вибірки - n;

· обгрунтування способу формування вибірки;

· відбір одиниць з Генеральної сукупності ( формування вибірки);

· вимірювання ознак, що вивчаються, у окремих одиниць;

· обробка отриманої інформації і розрахунок характеристик вибірки;

· визначення помилки вибірки;

· розповсюдження вибіркових характеристик на Генеральну сукупність.

Для постановки завдання вибіркового дослідження необхідно ввести наступні поняття:

- Генеральна сукупність - сукупність, що вивчається, з якої проводиться відбір одиниць, що підлягають вивченню, вона може бути кінцевою (N) або нескінченною (н).

- Вибіркова сукупність ( вибірка) - частина одиниць генеральної сукупності, відібрана для вивчення (n). Якість результатів вибіркового дослідження залежить від того, наскільки склад вибірки представляє генеральну сукупність, інакше кажучи, наскільки вибірка репрезентативна.

Під репрезентативністю вибірки розуміється відповідність її властивостей і структури властивостям і структурі генеральної сукупності. Репрезентативність вибірки може бути забезпечена тільки при об'єктивності відбору даних, що гарантується принципами випадковості відбору одиниць.

Принцип випадковості припускає, що на включення або виключення статистичної одиниці з вибірки не може вплинути ніякій інший чинник, окрім випадку. Цей принцип лежить в основі методів випадкового відбору, за допомогою яких формується вибірка.

Використання методів випадкового відбору при формуванні вибірки дозволяє надалі при обробці використовувати апарат теорії вірогідності.

Найчастіше за допомогою вибіркового дослідження визначаються наступні характеристики генеральної сукупності:

· Середнє значення ознаки в сукупності - X, розраховується як середня арифметична.

· Частка альтернативної ознаки в сукупності - d . Альтернативною вважається ознака, що набуває два значення. Якщо одне з них змінюється як задане, то частка альтернативної ознаки характеризуватиме питому вагу статистичних одиниць, що володіють заданим значенням альтернативної ознаки, наприклад, частка браку у виготовленій партії продукції;

· Дисперсія ознаки в сукупності -

2, як показник варіації.

У загальному вигляді завдання вибіркового дослідження формулюється таким чином: Хай є деяка генеральна сукупність відомого об'єму ( N одиниць). Необхідно на основі відомих характеристик вибірки отримати статистичні оцінки характеристик генеральної сукупності.

Статистичною оцінкою або статистикою характеристики (параметра) генеральної сукупності називають наближене значення шуканої характеристики (параметра), отримане за даними вибірки.

У статистиці використовуються два види оцінок - точкові і інтервальні.

Точковою статистичною оцінкою параметра генеральної сукупності називається конкретне числове значення шуканої характеристики.

Інтервальна оцінка є числовими інтервалами, що імовірно містять значення параметра генеральної сукупності.

Якість статистичних оцінок визначається наступними їх властивостями:

Спроможність: оцінка вважається спроможною, якщо при необмеженому збільшенні об'єму вибірки її помилка прагне до 0.

Незміщеність: оцінка вважається незміщеною, якщо при даному об'ємі вибірки n математичне очікування помилки дорівнює 0. Для незміщеної оцінки її математичне очікування точно дорівнює математичному очікуванню характеристики вибірки.

Незміщена оцінка не завжди дає хороше наближення оцінюваного параметра, оскільки можливі значення отримуваної оцінки можуть бути сильно розсіяні навколо свого середнього значення. Тому оцінка повинна відповідати ще одній вимозі - ефективності.

Ефективність: оцінка вважається ефективною, якщо її помилка, звана помилкою вибірки, є величиною мінімальною.

Для точкових оцінок справедливі наступні твердження:

· Точковою оцінкою генеральної частки є вибіркова частка

· Точковою оцінкою генеральною середньою є вибіркова середня

Таким чином, заздалегідь відомо, що оцінки для вказаних параметрів є спроможними і незміщеними. Для решти параметрів генеральної сукупності це твердження не є справедливим. У математичній статистиці доводиться, що точковою оцінкою генеральної дисперсії є вибіркова дисперсія, відкоректована на відношення

. Аналогічно, точковою оцінкою генерального среднеквадратічеськоговідхилення є вибіркове среднеквадратічеськоєвідхилення, відкоректоване на
.

В цьому випадку точкові оцінки генеральної дисперсії і генерального среднеквадратічеськоговідхилення є спроможними і незміщеними. Основним недоліком точкових оцінок є те, що вони не враховують помилки вибірки, тобто не є ефективними. Тому переважнішими є інтервальні оцінки параметрів генеральної сукупності, в яких ці помилки враховуються. Інтервальні оцінки відповідають всім трьом вимогам якості статистичної оцінки. Застосування інтервальних оцінок означає, що характеристики генеральної сукупності укладаються в певний діапазон значень. Щоб їх отримати, необхідно розрахувати відповідні помилки вибірки.

Розрахуємо середні арифметичні значення ознак в вибірковій сукупності. Розрахунки будемо виконувати на основі групувань, проведених вище. Для виконання розрахунків не обходимо визначити середнє значення відповідної ознаки в кожній групі.

Ознака «Урожайність льоноволокна»:

Номер інтервалу
1 4,89 10
2 7,166667 6
3 9,433333 3
4 12 6

Отже,