Смекни!
smekni.com

Онтология математического дискурса (стр. 1 из 3)

Гутнер Г.

Практически в любом математическом рассуждении решается проблема существования какого-либо предмета. Это можно принять, прежде всего, как своего рода эмпирический факт, поскольку содержанием значительной части теорем любого раздела математики является утверждение о существовании. Говорят о существовании нужного построения (в геометрии), о существовании корней уравнения (в алгебре), о существовании предела последовательности (в математическом анализе) - примеры можно множить безгранично. Однако нетрудно заметить, что даже в трех приведенных примерах смысл слова "существует" - не один и тот же. Прямая, проходящая перпендикулярно данному отрезку через его середину, существует потому, что может быть построена в соответствии с предписанными рядом геометрических утверждений правилами. Предел произвольной монотонной ограниченной последовательности не может быть построен в результате какой-либо процедуры, однако он также существует, хотя вывод о его существовании делается совершенно на иных основаниях. Каждый математик, по-видимому, так или иначе отвечает для себя на вопрос о том, как следует определить понятие существования для математических объектов. Во время фундаментальных дискуссий об основаниях математики, проходивших в начале XX века, эта проблема обсуждалась многими и мы обсудим ряд концепций существования во 2-й главе нашей работы. Сейчас же заметим, что вопрос о том, как понимать существование в математике прямо связан с тем, как доказывается существование математического объекта.

Названная проблема решается, как правило, в рамках математики. Однако можно поставить вопрос о существовании математических объектов иначе. Можно спросить, какова природа математических объектов или каков их онтологический статус. Их можно считать самостоятельными интеллигибельными сущностями, абстрагированными от чувственно воспринимаемых вещей свойствами, чистыми конструкциями ума и т.д. Наверное каждая философская система попыталась определить свое отношение к математике и выяснить как именно существуют и существуют ли вообще ее предметы.

Вопрос об онтологическом статусе - это также вопрос о том каков смысл слова "существует" в применении к математическому объекту. Однако в философии этот вопрос должен быть понят иначе, чем в математике. Философской проблемой в данном случае является, на наш взгляд, отношение рассуждения (в частности математического рассуждения) к своему предмету. Исследованию подлежит вопрос о том, как постигается или как создается предмет в ходе рассуждения и в силу каких обстоятельств предмет может быть определен в рассуждении как существующий.

Можно выделить два альтернативных подхода к рассмотрению онтологического статуса предмета (в частности, предмета математики). Предмет можно рассматривать как сущность, обладающую определенными свойствами, или как элемент в определенной системе отношений. Поэтому изучение природы математических объектов можно проводить в рамках, заданных двумя, в определенном смысле конкурирующими, категориями - сущности и структуры. Дискуссия между сторонниками двух связанных с этими категориями подходов - весьма типичная черта жизни философского и математического сообщества как в прошлом, так и сейчас. Ниже мы попытаемся обосновать это утверждение рядом ссылок.

Говоря об отношении рассуждения к предмету рассуждения мы выделяем два подхода, смысл которых впервые был явно прописан Шеллингом во Введении к "Системе трансцендентального идеализма". Здесь проведено разделение между понятиями субъективного и объективного и соответственно между натурфилософией и трансцендентальной философией. Субъективное и объективное рассматриваются Шеллингом как два противоположных начала, необходимо сосуществующих в любом наличном знании ([61], с.232). Вопрос о том, "кому из них принадлежит приоритет", т.е. что является подлинной исходной точкой всякого знания - мышление (Я, интеллигенция) или природа - невозможно разрешить однозначно. Но чтобы построить систему знания необходимо принять одно из указанных начал в качестве реальной предпосылки и попытаться вывести из него второе. Систему рассуждения, принимающую в качестве исходной посылки природу, Шеллинг называет естествознанием или натурфилософией. Противоположный подход, принимающий в качестве безусловного начала субъективное, он называет трансцендентальной философией.(См. примечание 1)Задачу последней Шеллинг формулирует предельно жестко. Само представление об объекте (природе, вещах и т.п.) должно быть дедуцировано из рассмотрения деятельности мыслящего Я. Утверждение о том, "что вне нас существуют вещи," должно быть отброшено, как предубеждение ([61], 235; курсив Шеллинга). Следовательно, в рамках трансцендентальной философии само понятие объекта должно быть рассмотрено как нечто производное от структуры мышления. Если натурфилософский подход призван решать как должна действовать мысль, чтобы достичь достоверного знания о существующей вне ее природе (независимом мире объектов), то трансцендентальный подход призван выяснить как должен быть устроен объект, чтобы стать адекватным познающей его мысли. Соответственно этому ставится вопрос о действительности объекта или о его существовании. Для трансцендентальной философии существование есть особый способ представления объекта мыслью. Рассмотрение онтологической проблематики в рамках трансцендентального подхода состоит, следовательно, в рассмотрении структуры рассуждения и обнаружении в нем таких способов отношения к предмету, которые позволили бы сказать о нем, что он существует. Иными словами, речь должна идти о способах правильного конструирования объекта в рассуждении.

Разделению двух подходов, которое провел Шеллинг, на наш взгляд коррелятивно рассмотрение двух способов образования понятий в математике и естественных науках, проводимое Кассирером в книге "Познание и действительность"[32]. Первый из названных способов он связывает с логикой Аристотеля и категорией субстанции. Логический ход, на который обращает внимание Кассирер, сводится к процедуре абстракции, т.е. отвлечения от единичной вещи ("первой сущности") ряда свойств, общих для нее с другими вещами. Образование понятий связано, следовательно, с последовательно проводимым обеднением содержания и увеличением степени общности понятий. При таком подходе всякое рассуждение должно рассматриваться как работа с общими (абстрактными) представлениями, описывающими классы сходных между собой сущностей. В таком рассуждении сущность, обладающая свойствами, должна неизбежно рассматриваться как отправная точка и как конечная цель мысли. Мышление в понятиях исходит из сущности, как из носителя свойств, которые должно абстрагировать. С другой стороны оно направлено на то, чтобы лучше понять эту сущность, т.е. высказать о ней наиболее достоверное суждение.(См. примечание 2)Альтернативный способ образования понятий, описанный Кассирером, исходит из той посылки, что "никакое суммирование отдельных случаев не может создать то специфическое единство, которое мыслится в понятии" ([32], c. 38). Такое единство дается не абстракцией, а специфической логической формой, позволяющей произвести любой подпадающий под это единство предмет. Например, "логическая определенность числа "четыре" дана благодаря его нахождению в ряду идеальной - и потому вневременно-значащей - совокупности отношений, благодаря его месту в математически определенной числовой системе" ([32], c.39). Понятие есть тогда логическое правило или функция, позволяющее определить структуру отношений, в которой единичный предмет оказывается элементом.

Проводимое Кассирером различение определяет два различных понимания категорий "общее - единичное". В первом случае под общим понимается свойство, равно присущее многим единичным предметам. Во втором - речь идет об общей структуре, объединяющей множество различных элементов. Причем свойства этих элементов не играют особой роли. Важно прежде всего то, что они отличны друг от друга, а единая логическая форма определяет структуру их отношений.(См. примечание 3)При таком подходе к рассуждению его предмет мыслится существующим постольку, поскольку оказывается определенным его место в заданной структуре. Он должен быть выведен из общей логической формы, т.е. заново произведен рассуждением как ее особенный элемент. Из сказанного ясно, что "структурный" подход к процедуре образования понятий, равно как и соответствующая ему интерпретация существования, возможны лишь в рамках трансцендентальной философии. Производящая объекты структура - это структура, внутренне присущая дискурсу, т.е. - в терминологии Шеллинга - принцип действия субъекта. Все "объективное", "природное", "внешнее" определяется через него и из него дедуцируется. Собственно категории "объект" и "природа" также оказываются особыми структурами дискурса, а понятия "внутреннего" и "внешнего" вовсе теряют смысл. (См. примечание 4)

Противопоставление категорий сущности и структуры при исследовании природы и онтологического статуса математических объектов является главной методологической посылкой нашего исследования. Его целью является попытка развития трансцендентального подхода к рассмотрению математического мышления и предмета математики. При этом мы будем обращаться к категориям, разработанным преимущественно Кассирером и Кантом. Одной из наших целей будет обоснование тезиса, обратного к только что сформулированному. Мы попытаемся показать, что всякое трансцендентальное рассмотрение обязательно приведет к пониманию существования как существования элемента в пределах заданной структуры отношений.

Противопоставление двух выделенных в настоящем Введении подходов к определение природы математических объектов и их онтологического статуса довольно заметно в современной философии математики. Каждый из этих подходов весьма интенсивно развивался в XX столетии и достаточно явно оформился в виде направлений, известных под именами математического реализма и математического структурализма. Первый характеризуется (см. [5], c. 144) как тенденция "рассматривать математические объекты: числа, фигуры, множества как существующие в особом мире, данные до их собственно математического анализа". Беляев и Перминов - авторы цитированной здесь характеристики - возводят эту тенденцию к Платону и Лейбницу, для которых "математические утверждения ... отражают мир вечных и идеальных сущностей" (с. 146). Современный математический реализм они связывают, прежде всего, с именами Фреге и Рассела (с. 146). Здесь речь должна идти по преимуществу о попытке определения числа на основании логических аксиом. Эта попытка приводит к пониманию числа как универсалии, она подразумевает определение "единственного и вполне конкретного объекта, а именно натурального числа самого по себе, в его свойствах" (с. 147).