Смекни!
smekni.com

Понятие пищевых добавок (стр. 7 из 12)

Гель практически является закреплённой формой коллоидного рас­твора (золя). Для превращения золя в гель необходимо, чтобы между распределёнными в жидкости молекулами начали действовать силы, вызывающие межмолекулярную сшивку. Этого можно добиться раз­ными способами: снижением количества растворителя за счёт испаре­ния; понижением растворимости распределённого вещества за счёт химического взаимодействия; добавкой веществ, способствующих об­разованию связей и поперечной сшивке; изменением температуры и регулированием величины рН.

Начало желирования сопровождается замедлением броуновского движения частиц дисперсной фазы (возрастанием вязкости), их гидра­тацией и образованием полимерной сетки. Способность полимеров образовывать полимерную сетку зависит от длины и числа линейно ориентированных участков их молекул, а также наличия боковых це­пей, создающих стерические затруднения при межмолекулярном взаи­модействии. Механизмы образования гелей могут сильно различаться; в настоящее время выделяют три основных механизма: сахарокислотный (высокоэтерифицированные пектины), модель «яичной упаков­ки» (например, низкоэтерифицированные пектины) и модель двойных спиралей (например, агар).

3.2.2. Токсикологическая безопасность и хранение

Все загустители и гелеобразователи, разрешённые для применения в пищевых продуктах, встречаются в природе. Пектины и желатин явля­ются природными компонентами пищевых продуктов, регулярно употребляемых в пищу: овощей, фруктов, мясных продуктов.

Почти все загустители и гелеобразователи, за исключением крахма­лов и желатина, являются растворимыми балластными веществами. Они не всасываются и не перевариваются. В количестве 4...5 г на один приём для человека они, как правило, являются лёгким слабительным. Каррагинаны и пектины могут уменьшать степень и скорость всасыва­ния других составляющих пищевых продуктов (например, холестери­на). Пектин, особенно низкометоксилированный, обладает высокой комплексообразующей способностью, благодаря чему способствует выведению из организма тяжёлых металлов и радионуклидов. Реко­мендуемое суточное потребление пектиновых веществ в рационе взрослого здорового человека составляет 5...6 г.

Нативный крахмал является питательным веществом, он полно­стью усваивается после растворения; нерастворённый крахмал практи­чески не усваивается. Модифицированные крахмалы расщепляются и усваиваются, как нативный крахмал, некоторые быстрее. Крахмалы, обработанные эпихлоргидрином, считаются непригодными для пище­вого производства, поскольку контакт с токсичным и канцерогенным эпихлоргидрином вызывает у токсикологов опасения.

Желатин является съедобным белком, поэтому может считаться пищевым продуктом. Из-за отсутствия эссенциальной аминокислоты триптофана собственная пищевая ценность этого белка низкая, одна­ко желатин может увеличивать пищевую ценность других белков (на­пример, белков мяса с 92 до 99 %).

В соответствии с рекомендациями ТЕСКА, ДСП подавляющего большинства загустителей и гелеобразователей не ограничено (есть ог­раничение ДСП для полуочищенного каррагинана — 20мг/кг веса тела в день). В соответствии с «Гигиеническими требованиями по примене­нию пищевых добавок» СанПиН 2.3.2.1293-03 за­густители и гелеобразователи, за исключением пропиленгликольальгината, применяют в пищевых продуктах согласно ТИ.

Срок годности сухих загустителей и гелеобразователей от полугода до двух лет. Сухие порошки загустителей и гелеобразователей могут храниться и дольше.

Они обязательно должны храниться в сухом месте и быть защище­ны от прямых солнечных лучей и длительного воздействия тепла. Ём­кости, в которых хранят добавку, обязательно следует плотно закры­вать после отбора каждой порции. Все гидроколлоиды являются благо­приятной средой для развития микроорганизмов, поэтому при работе с ними следует особенно тщательно соблюдать правила производст­венной санитарии и гигиены.

4. ВЕЩЕСТВА, СПОСОБСТВУЮЩИЕ УВЕЛИЧЕНИЮ СРОКОВ ГОДНОСТИ ПИЩЕВЫХ ПРОДУКТОВ

Срок годности пищевого продукта определяют двумя комплексами по­казателей качества:

1) показатели, которые должны оставаться неизменными в тече­ние всего срока хранения (сюда относятся вкус, аромат, консистен­ция продукта, его влажность, содержание в продукте жиров, белков, углеводов и т. д.);

2) показатели, изменяющиеся в процессе хранения (содержание микроорганизмов в продукте и показатели, определяющие его окисли­тельную порчу).

Когда хотя бы один показатель второй группы достигает предель­ного значения, срок годности продукта заканчивается, и он становится непригодным к употреблению в пищу, то есть теряет свою потреби­тельскую стоимость. Чтобы увеличить срок годности пищевого про­дукта, необходимо стабилизировать первую группу показателей и за­медлить изменение второй. Для решения обеих задач необходим доста­точно широкий спектр пищевых добавок.

Известно, что влажность среды сильно влияет на развитие микро­организмов. В последних содержится до 75...80% воды, и все питатель­ные вещества для их жизнедеятельности поступают в клетку в виде раствора в воде.

Микроорганизмы могут развиваться в средах, в которых содержа­ние воды не опускается ниже определенного уровня. С понижением влажности интенсивность размножения микроорганизмов уменьшает­ся и при достижении определенного содержания влаги прекращается совсем. Однако, для развития микроорганизмов имеет значение не аб­солютная величина влажности, а доступность содержащейся в субстра­те воды для развития микроорганизмов, которую в настоящее время называют «активность воды», которая влияет и на ин­тенсивность процессов окисления.

4.1. Консерванты

Консерванты добавляются к пищевым продуктам с целью предотвра­щения их микробиологической порчи и увеличения срока годности.

Консерванты не могут компенсировать низкое качество сырья и нарушение правил промышленной санитарии. Если продукт бактери­ально сильно загрязнён или начал портиться, консерванты уже беспо­лезны.

4.1.1. Общие сведения

Под консервированием пищевых продуктов понимают меры, направ­ленные против развития в продукте вредных микроорганизмов, обра­зования ими токсинов, предотвращения плесневения, появления не­приятных вкуса и запаха. Различают физическое, биологическое и хи­мическое консервирование.

Самые известные физические методы, препятствующие росту мик­робов: стерилизация и пастеризация (тепловая обработка), охлаждение и замораживание (воздействие холодом), высушивание (удаление во­ды) и обработка ионизирующими излучениями. Биологическое консер­вирование предполагает воздействие на пищевой продукт безвредных для здоровья человека культур микроорганизмов с целью предотвра­щения развития патогенной или другой нежелательной микрофлоры. Химические методы консервирования заключаются в добавлении опре­делённых веществ, которые подавляют развитие микроорганизмов. Та­кие вещества называют консервантами. На практике, как правило, не пользуются только одним методом консервирования: с давних пор ус­пешно сочетают различные методы. Например, при копчении воздей­ствие антимикробных составляющих дыма дополняется подсушивани­ем, а хранить копчёности рекомендуется при пониженной температу­ре. Этот традиционный подход к сохранению продуктов питания полу­чил научное обоснование в теории Ляйстнера. Согласно этой теории, микробиологическая стойкость пищевых продуктов основана на ком­бинации нескольких антимикробных факторов, называемых барьера­ми. Самыми важными для сохранения пищевых продуктов барьерами являются температура (высокая или низкая), активность воды (а„), ки­слотность (рН), окислительно-восстановительный потенциал (Е,), кон­серванты и конкурирующая микрофлора. Согласно барьерной техноло­гии Ляйстнера каждый стойкий и безопасный продукт питания должен иметь несколько барьеров. Их сочетание должно быть подобрано таким образом, чтобы микроорганизмы, присутствующие в сырье на старте, не могли их преодолеть. Грамотным применением барьеров можно до­питься оптимальной микробиологической стойкости продукта.

Наиболее широко используемыми консервантами в настоящее вре­мя являются: поваренная соль, этиловый спирт, уксусная (Е260), сер­нистая (Е220), пропионовая (Е280), сорбиновая (Е200), бензойная CIC210) кислоты и некоторые их соли (Е202, Е203, Е211, Е221...Е228, U261...E263, Е281...283), углекислый газ (Е290), нитриты (Е249, И 250), нитраты (Е 251, Е 252), низин (Е 234). Сахар в концентрации бо-псс 60 % также проявляет антимикробное действие. Установлено, что высокую антимикробную активность проявляют эфирные масла чес­нока, корицы, чабреца и ряда других растений.

Многие из консервантов обнаружены в природе. Сорбиновая кислота встречается в ягодах рябины (Sorbus iiucuparia), бензойная — в ягодах брусники (Vaccinium vitis-idaea L.), черники (Vaccinium myrtillus L.), в мёде, кислом молоке, йогурте и сы­ро. Молочная и уксусная кислоты образуются в результате молочно- уксуснокислого брожения в винах, кисломолочных продуктах и квашеных овощах; низин продуцируется бактериями вида Strep-lococcus lactis и встречается во всех кисломолочных продуктах. Для промышленного использования эти консерванты получают синтети­чески, но они полностью идентичны натуральным.

Консерванты можно условно разделить на собственно консерванты и нещества, обладающие консервирующим действием (помимо других полезных свойств). Действие первых направлено непосредственно на к истки микроорганизмов (замедление ферментативных процессов, синтеза белка, разрушение клеточных мембран и т. п.), вторые отрицательно влияют на микробы в основном за счёт снижения рН среды, активности воды или концентрации кислорода. Соответственно, каждый консервант проявляет антимикробную активность только в отноше­нии части возбудителей порчи пищевых продуктов. Иными словами, каждый консервант имеет свой спектр действия.