Тепловая денатурация мышечных белков сопровождается уплотнением мышечных волокон, отделением некоторой части воды вместе с растворенными в ней экстрактивными и минеральными веществами. Тепловая денатурация коллагена и последующая за ней дезагрегация этого белка приводят к разрыхлению структуры мяса рыб. Денатурация коллагена происходит при 40 °С, в соответствии с этим и переход коллагена в глютин происходит более быстрыми темпами и в более низком температурном интервале, чем у мяса[11].
Формирование своеобразного вкуса и аромата рыбы, подвергнутой тепловой кулинарной обработке, связано со своеобразным составом экстрактивных, минеральных веществ и липидов. Специфический вкус приготовленной рыбы обусловлен сравнительно высоким содержанием азотистых экстрактивных веществ и своеобразием их состава. В мясе морских рыб, как правило, содержится больше экстрактивных веществ, чем в мясе пресноводных рыб. Среди свободных аминокислот в мясе рыб мало глутаминовой кислоты, обладающей вкусом, свойственным говяжьему мясу, и очень много циклических аминокислот – гистидина, фенилаланина, триптофана. В процессе посмертного автолиза рыбы в результате ферментативного декарбоксилирования гистидин превращается в гистамин, обладающий высокой биологической активностью и токсичностью. В малых концентрациях гистамин оказывает сосудорасширяющее действие на организм человека, одновременно стимулирует деятельность желудочно-кишечного тракта. В более высоких концентрациях гистамин может вызывать тяжелые пищевые отравления.
При запекании рыбы на переход экстрактивных и минеральных веществ из рыбы в бульон оказывают влияние не только денатурация мышечных белков и их постденатурационные изменения, но и диффузия. Количество растворимых веществ, переходящих из рыбы в бульон в результате диффузии, зависит от гидромодуля. В рыбных бульонах содержится в среднем 28% экстрактивных и 24% минеральных веществ, 48% глютина. По качественному составу экстрактивных азотистых веществ рыбные бульоны существенно отличаются от мясных. В рыбных бульонах преобладают циклические (гистидин, триптофан, фенилаланин) и серосодержащие (цистин, цистеин, метионин, таурин) свободные аминокислоты.
Содержащийся в мясе рыб креатин при запекании частично превращается в креатинин, который вступает в химические реакции с продуктами карбониламинных реакций, свободными аминокислотами и сахарами с образованием гетероциклических ароматических аминов, обладающих сильным мутагенным и канцерогенным действием на живые организмы[11].
Общие потери массы находятся в пределах 18…20%, что вдвое меньше потерь массы мяса крупного рогатого скота.
Сравнительно небольшие потери воды мясом рыб при запекании, по сравнению с мясом сельскохозяйственных животных, объясняются особенностями его химического состава и гистологического строения: высоким содержанием белков актомиозинового комплекса в миофибриллах мышечных волокон; простым строением перимизия мышц; сравнительно низкой температурой денатурации и деструкции коллагена внутримышечной соединительной ткани. Тепловая денатурация мышечных белков сопровождается сравнительно слабой их дегидратацией. Вода, отделяемая белковыми гелями мышечных волокон и поступающая в пространство между пучками мышечных волокон, слабо выпрессовывается в окружающее пространство из-за незначительной деформации внутримышечных соединительнотканных образований мышц рыбы и сравнительно быстрой желатинизации коллагена. В результате этого мясо ерша при запекании теряет не более 25% содержащейся в нем воды.
Исследования белков мышечной ткани сырой и подвергнутой тепловой кулинарной обработке рыбы показало, что изменения направлены на значительное уменьшение растворимости миофибриллярных белков по сравнению с белками саркоплазмы, возрастание в 3…3,5 раза количества денатурированных белков и растворимых азотистых веществ, в том числе белковой природы, в связи с переходом коллагена в глютин.
Автолиз, протекающий в мясе рыб под действием тканевых ферментов при холодильном хранении, способствует дополнительному накоплению азотистых оснований и других соединений, характерных для мяса рыб. В результате этого специфические запах и вкус рыбных блюд усиливаются.
5.2 Физико-химические процессы, происходящие при тушении зелени
При первичной обработке пряной зелени происходит некоторая потеря основных пищевых веществ (крахмала, азотистых, минеральных веществ, витаминов и др.). Большая часть их теряется с отходами при очистке. Некоторая (незначительная) часть теряется при промывании и в результате окислительных процессов (это касается аминокислот, витаминов и т.д.).
В начальный период тушения могут активизироваться содержащиеся в зелени ферменты, вызывающие те или иные изменения пищевых веществ. На определенном этапе тепловой обработки ферменты инактивируются, цитоплазма и мембраны вследствие денатурации белков разрушаются, отдельные компоненты клеточного сока и других структурных элементов клетки получают возможность взаимодействовать друг с другом. В результате окислительных, гидролитических и других процессов изменяются химический состав продуктов, их структурно-механические свойства и органолептические показатели.
Подвергнутая тушению пряная зелень приобретают более мягкую консистенцию, легче раскусываются, разрезаются и протираются. Размягчение обусловлено частичной деструкцией клеточных стенок. При тушении глубоким изменениям подвергаются нецеллюлозные полисахариды клеточных стенок – гемицеллюлозы и протопектин, а также структурный белок экстенсин, целлюлоза при тепловой обработке овощей лишь частично набухает.
Нецеллюлозные полисахариды подвергаются деструкции, в результате которой образуются продукты, обладающие различной растворимостью. Именно степень деструкции полисахаридов и растворимость продуктов деструкции обусловливают изменение механической прочности ткани клеточных стенок. При тушении, наряду и параллельно с деструкцией протопектина, происходит деструкция гемицеллюлоз (также с образованием растворимых продуктов). Деструкция гемицеллюлоз начинается при более высоких температурах, чем деструкция протопектина, – от 70 до 80° С [8].
Структурный белок клеточных стенок растительного происхождения при тушении пряной зелени подвергается деструкции с образованием растворимых продуктов. Механическая прочность тканей при этом также несколько уменьшается.
Зеленый цвет пряной зелени зависит от красящего пигмента хлорофилла, который под действием кислот переходит в другое вещество – феофитин, имеющее желто-бурый цвет. Пряная зелень, содержащая летучие органические кислоты, при варке сохраняют свой цвет, если при тушении их погружают в бурно кипящую воду; в этом случае летучие кислоты улетучиваются вместе с парами воды и не успевают воздействовать на хлорофилл.
При тушении пряной зелени в большей или меньшей степени изменяются их масса и пищевая ценность (химический состав и усвояемость).
Вода в овощах почти полностью сохраняется. При тушении содержание воды уменьшается вследствие испарения.
Водорастворимые вещества пряной зелени находятся в клетках, внутренняя поверхность которых покрыта тонким слоем протоплазмы. При повышении температуры до 35–40 °С белки протоплазмы денатурируют; при температуре 60–70 °С увеличивается проницаемость клеточных стенок за счет разрыхления срединных пластинок (распад протопектина и ГМЦ). Эти изменения белков и клеточных стенок способствуют диффузии растворимых веществ из внутренних слоев во внешние, а из внешних – в окружающую среду.
Содержащиеся в пряной зелени витамины при тушении в той или иной степени разрушаются. Наиболее устойчивы к действию повышенных температур каротины. Витамины группы Вчастично переходят в отвар, частично разрушаются. В наибольшей степени разрушается витамин В6. Несколько меньше при тушении теряется тиамина и рибофлавина – около 20%; примерно 2/3 сохранившихся в зелени витаминов этой группы переходят в отвар. Значительным изменениям подвергается витамин С, который частично переходит в отвар, а частично разрушается. В начале тушения пряной зелени он окисляется под действием кислорода воздуха при участии окислительных ферментов. В результате часть аскорбиновой кислоты превращается в дегидроаскорбиновую. При дальнейшем повышении температуры происходит термическая деградация обеих форм витамина С. При припускании пряной зелени витамин С разрушается несколько больше, чем при варке[19].
5.3 Физико-химические процессы, происходящие при варке риса
Варка относится к тем процессам, которые способны изменять структуру риса и вызывать размягчения тканей. При взаимодействии крупы с водой она набухает (поглощает жидкость, что сопровождается значительным увеличением объема и массы продукта). Механизм набухания заключается во взаимном растворении высокомолекулярного вещества и дисперсной среды. Способность крупы поглощать воду объясняется гидрофильными свойствами содержимого клеток и клеточных стенок: белковых веществ, крахмала, пектиновых веществ, гемицеллюлозы, клетчатки. Для крупы и бобовых характерно ограниченное или предельное набухание, при котором набухшее тело остается в состоянии студня. Ограниченное набухание сопровождается частичным растворением полимеров, входящих в состав риса. Так, в процессе промывания риса в воду частично переходят белки, крахмал, сахара и другие пищевые вещества. При промывании рис поглощает воду и его первоначальная масса увеличивается.