Смекни!
smekni.com

Техника и технология обработки продуктов с использованием ВЧ (стр. 2 из 2)

В результате такой обработки может оказаться, что отдельные части продуктов будут готовы к употреблению, а другие останутся еще не размороженными. Такое положение является следствием неравномер­ной тепловой обработки продуктов в рабочих камерах СВЧ-приборов, так как процесс размораживания происходит в поле стоячей волны. Поэтому равномерный нагрев продуктов, особенно при их разморажи­вании, является основной проблемой, стоящей перед проектировщиками СВЧ-приборов.

Для равномерного нагрева продукт механически перемещают внутри камеры, помещая его на подставку, которая совершает вращательное, поступательное или вращательно-поступательное движение. Другим способом для равномерного нагрева продукта является возмущение кар­тины электромагнитного поля внутри камеры с помощью использова­ния специальных металлических отражателей — стирреров, создающих фазовые сдвиги векторов электрических полей и тем самым способ­ствующих более равномерному нагреву. Эти способы, повышающие равномерность нагрева при тепловой обработке, не решают указанной проблемы при размораживании продуктов. Проблема равномерного на­грева, особенно при размораживании, разрешена комплексным примене­нием указанных способов, путем так называемого «автоматического цикла размораживания» совместно со стиррером и вращающейся подставкой.

«Автоматический цикл размораживания» предусматривает периоди­ческий режим работы СВЧ-генератора на более низком уровне выход­ной мощности. Периодичность работы СВЧ-генератора составляет 20—40 с. Паузы между кратковременной. работой генератора служат для выравнивания температуры внутри нагреваемого продукта путем передачи тепла нагретых участков в менее нагретые.

Исследования, проведенные отечественными и зарубежными специа­листами, позволяют сделать следующие выводы по СВЧ-разморажи-ванию:

1) по биологической, ценности мясо, прошедшее СВЧ-обработку, практически не отличается от продукта, размораживание которого получено традиционным путем;

2) по органолептическим свойствам рыба, размороженная СВЧ-спс собом, лучше рыбы, размороженной традиционным способом.

Влияние СВЧ-обработки на пищевые продукты, в том числе и н| витамины, является предметом достаточно сложных исследований. Так,проблема использования электромагнитных СВЧ-печей для размораживания овощей и фруктов, подвергнутых низкотемпературному замораживанию, недостаточно изучена и ограниченно освещена в литера­туре. Установлено, что размораживание в поле СВЧ-энергии приводит к меньшим потерям неорганических веществ. При традиционном спо­собе размораживания часть минеральных веществ теряется вместе с вытекающей влагой. При СВЧ-размораживании потери влаги меньше и, как следствие, меньше потери неорганических веществ.

СВЧ-сублиматоры

СВЧ-сублиматоры считаются одним из перспективных видов быто­вых приборов. Сублимированные продукты сохраняют не только пита­тельные вещества гораздо лучше, чем сушеные или термообработан-ные, но и присущую им форму, цвет, запах. Упакованные в полиэтиле­новую тару, сублимированные продукты могут храниться несколько лет в обычных условиях. Для восстановления сублимированного про­дукта достаточно его увлажнить, опустив в воду.

Процесс сублимационной сушки продуктов заключается в том, что испарение влаги из продукта происходит после предварительного замо-раживания. К быстрозамороженному продукту при температуре —30°С или ниже подводят тепло или СВЧ-энергию. Происходит испарение (сублимация) влаги; находящейся в твердом состоянии (лед), безперехода в жидкое состояние.

Конструктивно СВЧ-сублиматоры представляют собой соединение морозильника и СВЧ-печи. В камеру СВЧ-печи вводят испаритель морозильника, позволяющий снизить температуру в камере до — 30 °С. В эту же камеру вводят СВЧ-энергию от магнитронного генератора. Управляя температурой в камере, мощностью и временем работы магнитрона, можно обеспечить оптимальный технологический режим не только сублимации, но и приготовления пищи к заданному моменту времени без участия потребителя. Загрузив подготовленный к приго­товлению продукт, охлаждают камеру, что позволяет хранить продукт в течение нужного времени. К заданному сроку, который устанавли­вают на пульте микропроцессорного управления сублиматором, вклю­чается СВЧ-генератор и продукт доводится до готовности. В этом отно­шении очень удобны замороженные продукты, изготовленные пищевой промышленностью.

Объем производства замороженных продуктов (вторых блюд, мяс­ных и овощных наборов, фруктов, ягод) будет постоянно увеличиваться, а использование их в быту значительно улучшит ассортимент, обеспе­чив этим рациональное питание (с позиций витаминности и калорий­ности) и сократив время для приготовления пищи.

Испытание сверхвысокочастотных бытовых приборов

Испытания сверхвысокочастотных бытовых приборов имеют некото­рые особенности, связанные с измерением СВЧ-мощности. Остальные параметры (потребляемая мощность, соответствие требованиям элек­тробезопасности и др.) проверяют в соответствии с ГОСТ 14087—80.

Измерение СВЧ-мощности. Стандартным прибором сделать это не всегда удается. Поэтому заводы — изготовители СВЧ-печей рекомен­дуют принять калориметрический метод следующим образом.

1.Подготовить печь к включению согласно руководству по ее эксплуатации и поместить в рабочую камеру печи кастрюлю из жаро­прочного стекла объемом 1,5 л (РСТ УССР 473—72) с 0,001 м3 (I л) питьевой воды (ГОСТ 2874—82).

2.Подготовить печь к включению, предварительно замерив темпе­ратуру воды, помещаемой в камеру печи.

3.Нажать кнопку «сеть> на передней панели печи.

4.Набрать на световом табло 3 мин 10 с, нажав сначала кнопку «быстро», а затем «замедл.».

5.Нажать кнопку «жарить» («парить» или «размораживать»).

6.После окончания работы таймера одну минуту перемешивать воду в кастрюле термометром, не касаясь стенок и дна кастрюли. Измерить температуру, выключить печь.

7.Подсчитать мощность в камере по формуле:

N=(T2-T1) (ρ1V1c1 + mc2)/t,

где T1— начальная температура воды, К; T2— конечная температура воды, К; р — плотность воды, кг/м3, р=1000 кг/м3; V1, —объем воды, м3 ; c1— удельная теплоемкость воды, Дж/(кг *К), c1=4190 Дж/(кг*К); mмасса кастрюли, кг; c2— удельнаятеплоемкость кастрюли, Дж/(кг*К); с2 = 838 Дж/(кг-К), t — время нагрева, с.

Функционирование печи при отклонениях напряжения. Функциони­рование проверяют следующим образом.

1.Устанавливают напряжение питания печи 198 В.

2.Определяют мощность в рабочей камере печи. Мощность в рабо­чей камере в режиме «жарить» (100% мощности в камере) должна быть не менее 450 Вт.

3.Устанавливают напряжение питания печи 242 В.

4.Определяют мощность в рабочей камере печи, которая в режиме «жарить» должна быть не более 800 Вт.

Проверка плотности потока утечки электромагнитной энергии. Про­верку производят измерителем плотности потока мощности типа ПЭ-9Р на расстоянии 0,5 м от поверхности печи. Для этого необходимо сде­лать следующее:

1) подготовить измери­тель плотности к включению и выключить согласно инструкции по эксплуатации;

2) подготовить печь к включению; при проведении испытаний по данной мето­дике в печь поместить кастрюлю из жаропрочного стек­ла с 0,0002 м3 (0,2 л) воды;

3)нажать кнопку «сеть» на передней панели печи;

4)набрать на световом табло 24 мин 30 с, нажав сначала кнопку «быстро», а потом «замедл.»;

5)нажать кнопку «жа­рить»; через 1 мин начать измерение утечки плотности потока электромагнитной энергии; каждые 2—3 мин необходимо менять воду; при замене воды печь должна быть выключена;

6) в процессе измерения в каждой точке антенна должна поворачиваться вокруг своей оси на угол не менее 900 ; отсчет принимают максимальное показа­ние прибора (измерителя); при измерении пространство вокруг печи на расстоянии не менее 2 м должно быть свободно от металлических конструкций;

7) выключить печь.

При проведении приемосдаточных испытаний максимальную плот­ность потока утечки электромагнитной энергии замеряют путем пере­мещения антенны измерителя вдоль линии сопряжения дверцы с каме­рой печи и в плоскости смотрового окна дверцы и перпендикулярно нижней плоскости редуктора.

При проведении периодических испытаний замер плотности утечки производится согласно рекомендациям Киевского научно-исследова­тельского института общей и коммунальной гигиены.

Измерение производится в четырех плоскостях: первая плоскость — на уровне верхней плоскости печи; вторая — на уровне полувысоты корпуса печи; третья — на уровне нижней плоскости корпуса печи; четвертая — плоскость сопряжения дверцы с камерой а также в центральной точке смотрового окна дверцы.

ЗАКЛЮЧЕНИЕ

Развитие технического прогресса, новых технологий оказывает влияние на разработку новых современных бытовых машин и приборов. Все больше и больше внедряется компьютерной технологии, передовых методов средств телекоммуникации, такие как Интернет и мобильная связь. В недалеком будущем как раз с помощью развивающейся телекоммуникации возможно будет управление современными бытовыми приборами из любой точки земного шара. Современные бытовые приборы должны стать действительно надежными помощниками человека в быту.

Список используемой литературы

1. Бондарь Е.С. Современные бытовые электроприборы и машины – М., Машиностроение, 1987.

2. Привалов С.Ф. Электробытовые устройства и приборы – СПб., Лениздат, 1994.