Изучение энергетического обмена представляет большой интерес, так как знание энергетической цены резистентности при развитии адаптационных реакций на разных уровнях позволяет избрать в каждом случае оптимальный уровень, а также необходимое биохимическое сопровождение для оптимизации энергетического обмена [27]. Основным источником энергии в организме служит аденозинтрифосфорная кислота (АТФ). Высвобождение энергии из этого вещества происходит в результате гидролиза его высокоэнергетической фосфатной связи. Энергия АТФ используется организмом для всех его процессов - синтеза различных веществ, физической работы, теплопродукции, регенерации и т.д. В связи с этим в организме должна функционировать такая система, которая бы восстанавливала и поддерживала определённый уровень АТФ. Основная масса АТФ образуется в процессе фосфорилирования в окислительной цепи митохондрий и только незначительная часть её синтезируется при субстратном фосфорилировании в случае недостаточного обеспечения клетки кислородом. Окислительным процессам в митохондриях предшествуют сложные превращения энергетических субстратов на соответствующих участках метаболизма. для углеводов - это гликолиз, для жиров - р-окисление жирных кислот, для белков - дезаминирование аминокислот. Начиная с образования ацетил-коэнзима А, дальнейшее их превращение локализовано в цикле Кребса.
Изменение энергетического обмена в условиях напряжения организма реализуется на всех уровнях организации биосистемы - от организменного до клеточного [17]. Установлено, что в организме, в целом, 50% общей энергии основного обмена получается за счет окисления углеводов, а 50% - за счет окисления жиров. При действии чрезвычайных раздражителей энергообеспечение физиологических процессов существенно перестраивается. На первых этапах оно идет за счет использования углеводных ресурсов[27].
При стрессе происходит мобилизация многих физиологических систем организма, в результате деятельности которых сопротивляемость его к стресс факторам увеличивается. Возникновение генерализованного адаптационного синдрома (ГАС) Селье связал с адаптацией, с повышением сопротивляемости организма к действию поврежденных факторов. Селье считает, что стрессорный ответ реализуется следующим образом: неспецифический стимул (нервный импульс, химическое вещество или недостаток необходимого метаболического фактора) активирует «первый медиатор», который еще не идентифицирован. Этот фактор стимулирует определенные нейроэндокринные клетки подбугорной области, которые трансформируют первые сигналы в кортикотропный гормональный рилизинг-фактор (КРФ) - гуморальный передатчик, достигающий передней доли гипофиза. В основе стресса лежит напряжение гипоталамо-гипофизарно адренокортикальной системы [54].
Сразу после начала действия стресс-фактора из передней доли гипофиза выбрасывается АКТГ, стимулирующий кору надпочечников, вследствие чего в кровь выделяется значительное количество кортикостероидов. Глюкокортикоиды активируют глюконеогенез, который обеспечивает организм запасами готовой к использованию энергии, столь необходимой для адаптации в стрессовых ситуациях, вместе с тем угнетая активность гексокиназы и глюкозо-6-фосфат дегидрогеназы.
Наблюдают отставание ресинтеза АТФ от ее использования для возрастающей функции нервных центров, мышц и других систем. В период перехода от состояния покоя к функциональной активности в скелетных мышцах происходят значительные изменения интенсивности тканевого дыхания и генерации адениловых нуклеотидов. Это связано с частичным разобщением между дыханием и фосфорилированием, что приводит к отрицательному балансу АТФ [39]. Суммарная концентрация АТФ и КФ в мышцах при физических, нагрузках снижается и повышается содержание АДФ и неорганического фосфора.
В крови, в результате возбуждения симпатического отдела нервной системы после физической нагрузки, пропорционально нагрузке увеличивается концентрация норадреналина. Норадреналин и адреналин активизируют гликолиз и гликогенолиз через 3,5 циклический АМФ, являющийся медиатором, и способствуют увеличению концентрации глюкозы в крови, что вызывает возбуждение гипоталамических центров, регулирующих секрецию инсулина [23]. По данным Л.Е. Панина [28] при 20 минутах плавания крыс снижается активность гексокиназы обеих типов в сердечной мышце.
В печени отмечают снижение количества гликогена и увеличение активности пируваткиназы при физических нагрузках, а в крови - увеличение концентрации глюкозы и пирувата. даже при кратковременной физической работе в печени и мышцах наблюдается активация гликолиза [21].
При значительной гипоксии или аноксии снижается концентрация АТФ, КФ, гликогена в миокарде, скелетных мышцах, печени и головном мозге, и одновременно повышается концентрация неорганического фосфора, пирувата и лактата [23]. Увеличивается освобождение норадреналина из симпатических нервных окончаний, что способствует активации гликолиза. Норадреналин стимулирует систему гликолиза через аденилатциклазу. Аноксия, сопровождающаяся дефицитом фосфорных соединений, богатых энергией, накоплением лактата, способствует быстрой и значительной активации синтеза фосфолипидов в клеточных мембранах, которые потенцируют эффект естественных активаторов фермента аденилатциклазы, обеспечивающей образование циклического 3,5 АМФ из АТФ [50]. Катехоламины, активируя фосфорилазу и изоцитратдегидрогеназу [20], интенсифицируют гликогенолиз и пропускную способность цикла Кребса.
Таким образом, различные экстремальные факторы, воздействующие на организм животных, вызывают развитие стрессовой реакции, что приводит к дефициту энергообеспечения и мобилизации энергетических ресурсов. Это служит сигналом для активации генетического аппарата клеток самых различных органов. При этом основное значение придают АДФ и АМФ, креатину, неорганическому фосфору, некоторым аминокислотам в активации генома при мышечной деятельности [32] и величине потенциала фосфорилирования и отношению креатин/ креатинфосфат [24].
В процессе адаптации к физическим нагрузкам, холоду и гипоксии также установлено увеличение количества митохондрий в клетках [36],что повышает способность мышц утилизировать пируват, предотвращает увеличение концентрации лактата в крови, обеспечивает мобилизацию и использование в. митохондриях кислот, что влечет за собой максимальную степень сопряжения окисления и фосфорилирования и наибольший возможный выход АТФ на единицу потребляемого кислорода[23].
Факторы внешней среды, к которым адаптируется организм, действуя различными путями, в конечном результате приводят к одному и тому же общему комплексу сдвигов - дефициту энергообеспечения, увеличению потенциала фосфорилирования и мобилизации энергетических ресурсов. Все это является сигналом генетическому аппарату клеток к усилению биосинтеза нуклеиновых кислот и белков митохондрий. Мощность системы митохондрий увеличивается и осуществляемая ими выработка АТФ на единицу массы тканей возрастает, что способствует общей активации биосинтеза и образования всех клеточных структур, развитию процесса адаптации и возникновению фазы резистентности [24].
Многократно или постоянно действующие факторы, вызывающие повышение резистентности организма, создают основу для перекрестной адаптации. Так, например, установлено, что адаптация к физическим нагрузкам способствует развитию приспособления к гипоксии, рентгеновскому облучению, разности температур и др.[6].
Однако, такие пути повышения резистентности длительны и практически не приемлемы в животноводстве. Одним из важнейших путей быстрого повышения резистентности животных служит применение адаптогенов. «...действуя через циклическую 3,5 АМФ или иные механизмы, выступая в роли индукторов генетического аппарата, они смогут вызывать активацию образования митохондрий и формирование других изменений, составляющих структурную основу адаптации. В итоге можно будет получить увеличение резистентности организма к определенным факторам заранее - до встречи с этими факторами» [23].
Проблема стрессов в животноводстве и обусловленные ими значительные экономические убытки, которые особенно проявляются в условиях промышленных технологий, ставят в ряд актуальных научно-практических вопросов разработку эффективных способов профилактики негативного влияния стресс-факторов на физиологическое состояние и продуктивность сельскохозяйственных животных. Одними инженерно-техническими методами не всегда удается сберечь здоровье животных, обеспечить их высокую продуктивность и уменьшить затраты кормов на единицу продукции. Поэтому, в условиях действующих технологий, когда стрессовых ситуаций избежать невозможно, большое значение имеет применение химических и гормональных препаратов, витаминов, антибиотиков, антистрессовых кормовых добавок, адаптогенов и нейролептиков.
Среди химических веществ часто применяется, как стрессовый препарат янтарная кислота или ее соль -сукцинат натрия . По данным авторов, сукцинат характеризуется высокой стойкостью к окислению в тканях, низкой стоимостью, выраженным антистрессовым действием. Янтарная кислота, как известно, интенсивно окисляется в цикле трикарбоновых кислот, который занимает центральное положение в синтeзе АТФ в клетке. Установлено, что при скармливании животным сукцината в их тканях увеличивается отложение гликогена, усиливается тканевое дыхание, окислительное фосфорилирование, моторное и секреторная функция кишечника.
Положительное влияние на гемопоэз, обменные процессы, иммунный статус и рост молодняка крупного рогатого скота в условиях стресса получено при введении доцецония и карбоксилазы.