Смекни!
smekni.com

Производство сливочного масла (стр. 3 из 5)

Химический состав масла, выработанного двумя способами, отражающий использование составных частей сливок, различен (табл.47). По данным ВНИИМСа, в масле, выработанном способом преобразования высокожирных сливок, содержание COMO на 9-10% выше, чем в масле, полученном способом сбивания. Оно также содержит больше лактозы, белков, биологически ценных фосфолипидов, некоторых карбонильных соединений, но характеризуется меньшим количеством летучих жирных кислот.

ВНИИМСом разработаны новые виды масла, обладающие повышенной биологической ценностью - масло с увеличенным содержанием белка, с заменой 25% молочного жира растительным маслом, с различными наполнителями и т.д.

4. Биохимические процессы при производстве сливочного масла

Масло животное - пищевой продукт, основой которого является жировая фаза коровьего молока или молока других сельскохозяйственных животных (буйволиц, самок яка, козьего и др.). Характер структуры, физико-химические характеристики, потребительские показатели масла обусловлены массовой долей жира.

При выработке масла методами сбивания сливок и преобразования высокожирных сливок наряду с агрегатным изменением молочного жира протекают биохимические процессы, вызываемые полезной и вредной микрофлорой и ее ферментами. Значение этих процессов особенно велико при выработке кислосливочного масла. При производстве сладкосливочного масла с соблюдением технологических режимов и санитарных условий биохимические процессы не оказывают определяющей роли (при отсутствии загрязнения сливок посторонней-микрофлорой).

Технология кислосливочного масла основана на биохимических процессах, возбудителями которых являются молочнокислые и ароматобразующие бактерии, используемые в виде заквасок. В результате их развития в сливках в масле происходит гомо - и гетероферментативное молочнокислое брожение.

В зависимости от условий среды при гомоферментативном молочнокислом брожении, кроме молочной кислоты, образуются небольшие количества летучих кислот, диацетила, ацетоина, бутеленгликоля и других соединений. Большее количество их продуцируют ароматобразующие бактерии при сбраживании лимонной кислоты.

При гетероферментативном молочнокислом брожении, кроме молочной кислоты, образуются спирт, уксусная кислота, углекислый газ.

В образовании аромата кислосливочного масла участвуют летучие кислоты, диацетил, ацетоин (как предшественник диацетила), эфиры, которые образуются при гетероферментативном молочнокислом брожении и являются продуктами метаболизма ароматобразующих бактерий. Кислосливочное масло с выраженными вкусом и ароматом содержит на 100 г продукта: 0,1-0,5 мг диацетила, 18-30 мг летучих жирных кислот (муравьиной, уксусной, пропионовой, масляной) и до 10 мг этилового спирта.

Синтез диацетила и ацетоина ароматобразующими молочнокислыми бактериями происходит в основном из пирувата, полученного при сбраживании как глюкозы, так и цитратов. Для повышения аромата при изготовлении закваски целесообразно использовать лимонную кислоту в количестве 0,2%, а при выработке кислосливочного масла 0,1% к массе его плазмы, или 180 г на 1 т готового продукта.

На образование и накопление ароматических веществ в сливках и масле большое влияние оказывают температура пастеризации и условия среды. Оптимальной температурой пастеризации сливок является 85 °С [7]. Повышение температуры сливок, их выдержка, повторная пастеризация обусловливают увеличение редуцирующих веществ в сливках и плазме масла, отрицательно влияющих на развитие ароматобразующих бактерий и накопление ароматических веществ в масле.

Максимальное накопление диацетила происходит при рН среды 4,7-5,2 и высоком окислительно-восстановительном потенциале. При этих условиях наряду с образованием ароматических веществ в результате сбраживания глюкозы и цитратов ароматобразующими бактериями, дцетоин (не имеет запаха) может окисляться в диацетил. В соответствии с этим установлены пределы сквашивания сливок, кислотность плазмы 55-60 °Т и кислотность плазмы масла не выше 55 °Т.

Существует метод производства кислосливочного масла, предусматривающий обогащение продукта вкусовыми и ароматическими веществами посредством внесения смеси кислот (молочной, уксусной, муравьиной) и диацетила.

При производстве сладкосливочного масла развитие биохимических (ферментативных) процессов является признаком неблагополучия. В случае вторичного загрязнения сливок и масла посторонней микрофлорой и ее ферментами при благоприятных условиях могут протекать биохимические процессы, вызывающие снижение качества масла. При этом основными показателями является образование следующих продуктов метаболизма бактерий:

молочной кислоты - в результате сбраживания лактозы молочнокислыми бактериями (повышается кислотность плазмы масла);

различных азотистых соединений, на что указывает повышение аминного азота в плазме масла - в результате развития протеолитических и других бактерий, обладающих протеолитическими свойствами;

свободных жирных кислот - в результате липолиза жира, вызванного развитием бактерий и ферментов, обладающих липолитическими свойствами.

Повышение кислотности плазмы свежего масла обнаруживается органолептически, а продукты протеолиза и липолиза только аналитически.

При выработке кислосливочного масла повторное обсеменение посторонней микрофлорой сливок и готового продукта может также вызвать снижение его качества.


Таблица 7 - Сравнительные показатели анализа качества

Показатели Масло крестьянское сладкосливочное несоленоеГОСТ 37-91 Масло крестьянское сладкосливочное несоленоеООО "Молвек" Масло крестьянское сладкосливочное несоленоеОАО молочный комбинат "Пензенский" Масло крестьянское сладкосливочное несоленое ООО "Северский молочный завод"
Влага,% 25 26,2 25,1 24,6
СОМО,% 2,5 3,6 3,8 4,3
Жир,% 72,5 70,2/61,2* 71,1 71,1
Белок, г/100г 0,8 0,8 1,3 1,8
Крахмал Не должно быть Не выявлено Не выявлено Не выявлено

* экстракционный метод

5. Компоненты, участвующие в формировании качества и стойкости масла

Вкус и запах сливочного масла. Они обусловлены наличием комплекса веществ (сульфгидрильные соединения типа SH-групп, лактоны, летучие жирные кислоты, карбонильные соединения и др.), присутствующих в исходном сырье и образующихся в процессе его выработки при тепловой обработке, биохимическом сквашивании сливок и внесенных с вкусовыми наполнителями.

Сульфгидрильные соединения. Соединения типа SН-групп образуются при пастеризации сливок в результате частичного восстановления серосодержащих аминокислот (цистина, метионина). Между температурой пастеризации сливок и содержанием сульфгидрильных соединений имеете" прямая зависимость. Сульфгидрильные соединения обладают восстановительными и антиокислительными свойствами.

Лактоны. Образуются при пастеризации сливок из - и у-оксикислот. С повышением температуры пастеризации сливок от 60 до 120 °С количество лактонов в сливочном масле возрастает в 1,5-3 раза. Максимальное количество лактонов образуется при сквашивании сливок до кислотности 45 °Т.

Карбоновые кислоты. Наибольшее значение имеют молочная кислота и свободные летучие жирные кислоты (муравьиная, уксусная, пропионовая, масляная, капроновая, каприловая, каприновая и ряд других), образующиеся в результате тепловой обработки сливок, молочнокислого брожения при сбраживании лактозы и цитратов молочнокислыми бактериями (при выработке кислосливочного масла), гидролиза молочного жира под действием микрофлоры, обладающей липолитическими свойствами, и липолитических ферментов, в частности фермента липазы, окислительных реакций молочного жира, дезаминирования аминокислот, протекаемых при выработке и хранении масла.

Для получения масла с приятными вкусом и запахом содержание этих кислот в сливках не должно превышать 30-40 мг/кг; повышение может быть причиной снижения качества продукта.

При хранении масла в результате окислительных реакций происходит накопление свободных летучих жирных кислот. Увеличение концентрации свободных летучих жирных кислот, особенно масляной, может послужить причиной появления привкусов, обесценивающих качество масла. Оптимальное содержание масляной кислоты в масле 3-5 мг/кг.

Карбонильные соединения. Наличие их в масле может оказаться причиной образования как приятного, так и неприятного запаха. Поэтому необходимо учитывать концентрацию этих веществ. Предшественниками карбонильных соединений могут быть аминокислоты, жирные кислоты и углеводы. При окислительном дезаминировании аминокислот с последующим декарбоксилированием образуются такие альдегиды, как формальдегид, ацетальдегид, пропионовый, изомасляный, изовалериановый и др.

В процессе окисления ненасыщенных жирных кислот и реакциях меланоединобразования в сливках и масле образуются алифатические и ароматические альдегиды (формальдегид, ацетальдегид, капроновый, каприловый, масляный, бензойный, фенилуксусный и др.).