Смекни!
smekni.com

Зависимость интенсивности дыхания растительных продуктов от температуры (стр. 5 из 8)

Процесс замораживания, в частности внеклеточная кристал­лизация, зависит от холодостойкости и степени закаливания продукта данного вида.

При понижении температуры тканей уменьшается кинети­ческая энергия молекул, повышается вязкость внутриклеточной жидкости, уменьшаются растворимость газов и диффузия ве­ществ, что в совокупности приводит к снижению скорости хи­мических реакций. В жидкой фазе отмечается повышенная кон­центрация электролитов, среди которых интерес представляют хлористые соли натрия, аммония, калия и органических ве­ществ (сахаров, нуклёотидов и низкомолекулярных белковых соединений). Концентрированные растворы агрессивны по отно­шению к белкам, прежде всего ферментам. Поэтому, несмотря на снижение кинетической энергии и ограничение возможности диффузии, некоторые ферментативные реакции в заморожен­ных тканях могут ускоряться либо будет изменяться их тече­ние. Замораживание действует прежде всего на липопротеиновые комплексы. Разрыв водородных связей в совокупности с по­вышением ионной силы внутриклеточных растворов приводит к разрушению комплексов.

Из ферментов легче других повреждаются те, которые обра­зуют сложные мультиферментные системы, локализованные на внутренних мембранах органоидов клетки: ферментные системы дыхательной цепи и окислительного фосфорилирования митохондрий. При этом нарушаются координация и сбалансирован­ность отдельных реакций, а также их синхронность. Происходит разобщение процессов дыхания (окислительного фосфолирирования), что выражается в утрате организмом основных жизнен­ных функций, а именно дыхания и способности к генерации энергии.

В вакуоли локализована инвертаза, особенностью которой является активность в широком диапазоне рН (3,0—7,5). По­этому изменение кислотности среды при замораживании не сни­жает ее активности. Активируемые инвертазой реакции обус­ловливают накопление сахара в замороженной ткани.

Сохранение активности пектолитических ферментов способ­ствует повышению гидрофильных свойств коллоидов и умень­шению степени повреждения стенок.

Каталаза и пероксидаза катализируют дегидрирование фе­нолов, аминов, флавонов и аминокислот. Их действие иногда является причиной появления у замороженных плодов и овощей постороннего привкуса. Из этих ферментов пероксидаза более устойчива к действию отрицательных температур.

Существуют и такие ферменты, активность которых повы­шается при замораживании. К ним относятся полифенолоксидаза и липолитические ферменты. Действие липазы проявля­ется даже при температуре —40 °С.

Пектолитические ферменты в зависимости от вида продукта оказывают различное действие. Так, в яблоках их активность приводит к размягчению ткани.

7)РЕЖИМЫ ХРАНЕНИЯ

Для каждого вида продукции разработаны оптимальные режимы хранения (табл. 1(а)). Температуру и влажность воздуха в хранили­щах измеряют психрометром Августа. В небольших подвалах его размещают в средней части прохода на высоте 1,5 м от пола. В погребах и хранилищах, удаленных от жилища, должно быть четыре-пять таких психрометров. Их располагают в середине, в конце (на расстоянии 1 м от пола) и под коньком.

РЕЖИМ ХРАНЕНИЯ ОВОЩЕЙ И КАРТОФЕЛЯ

Продукция Тсмпсретура, °С Относитсяьн»» влажность воз­дух», % Продолжитель­ность хране­ния, мес
Томаты:
зеленые 12...15 85—90 1—2
розовые 8...IO 85—90 До I
красные 0...2 85—90 До 0,5
Перцы 8...IO 90—95 До 0,5
Баклажаны 7...10 90—95 0,5-0,7
Морковь 1...0 90-95 4—7
Свекла 0...1 90—95 - 8—10
Редис 0 90—95 До 1
Петрушка 0...2 95 2—2,5
Сельдерей - 0.5...0 90—95 2-4
Лук (репчатый) - 3...0 70—80 6—8
Лук-перо 0 90—95 До 1
Чеснок - 3...0 70—80 6-8
Картофель 4...5 90—95 7—8

Таблица 1(а).

Осенью, когда температура воздуха бывает повышенной, на ночь для создания сквозняка открывают все окна, вытяжные трубы, люки, двери, а днем их закрывают, чтобы сохранить запас холода. Иногда в погребах отмечается высокая влажность воздуха. Ее признаками служат затхлый спертый воздух, ощущение сырости, появление плесени и конденсированной влаги на потолке, стенах, стеллажах, ящиках.

Чтобы понизить чрезмерную влажность воздуха, одновременно открывают двери и отдушины. Можно поставить в подвал ящик с негашеной известью, солью или древесным углем — эти материалы впитывают воду.

При похолоданиях утепляют крышу. С декабря наступает опас­ность промерзания хранилища. К этому времени двери, а при необходимости и стены обивают матами и рогожей. Вентиляционные трубы, кроме нужных для работы, плотно закрывают соломой или другими материалами.

8)БЫСТРОЕ ЗАМОРАЖИВАНИЕ

Цель быстрого замораживания, как и любого другого консервирующего процесса, свести на нет или, по крайней мере, замедлить реакции, ухудшающие качество продуктов и в конечном итоге делающие их непригодными к употреблению.

Практически можно говорить только о том, что же преоблада­ет в применяемом процессе. По этому решающему действию или характеру процесса его относят к той или иной группе.

Любой процесс консервирования тем лучше, чем меньшие изменения он вызывает в продуктах в сравнении с их первоначальными свойствами и чем более длительный срок хранения он обес­печивает. В настоящее время из применяемых в промышленных масштабах методов консервирования продуктов процессы холо­дильной обработки и замораживания лучше всего удовлетворяют упомянутым выше требованиям, поскольку, с одной стороны, они по отношению к другим процессам консервирования вызывают бо­лее слабые изменения свойств продуктов, а с другой—обеспечи­вают достаточно долгую для практических целей сохраняемость пищи.

Процесс консервирования путем холодильной обработки зани­мает особое место еще и потому, что после охлаждения или замо­раживания продукты можно сохранять с помощью любого друго­го процесса консервирования и, наоборот, продукты, законсерви­рованные с помощью других методов, хранятся дольше всего толь­ко в охлажденном состоянии;

Процессы, ухудшающие качество продуктов, или процессы, при­водящие в конечном итоге к их порче, развиваются в комплекс­ных условиях. Различают физические, биохимические и биологиче­ские процессы порчи продуктов. Холодильная обработка незави­симо от характера обрабатываемого продукта действует на эти процессы с определенной закономерностью.

Из физических процессов порчи к самым основным относятся процессы усушки продуктов или потери массы. Они вызывают не только количественные изменения (уменьшение массы), но и мо­гут привести к ухудшению качества. Потеря массы продуктов подчинена следующей закономерности:

ΔS = Βa(Pп-φp)

где Δ S — теряемое продуктами количество воды за единицу времени, г/ч; Β — коэффициент испарения воды, г/(Н-ч); А—площадь поверхности продуктов, м2;

рп — давление водяных паров при температуре поверхности продуктов, Па; φ — относительная влажность воздуха в виде десятичной дроби; р—давление насы­щенных водяных паров при температуре окружающей среды, Па.

При данной поверхности продуктов и данной величине коэффи­циента испарения потеря массы зависит от величин Pп, φр и р. Ес­ли одни и те же продукты с равновесным паросодержанием, на­пример 95%, хранить при различных температурах в помещении с относительной влажностью 80%, то величина Рп—φр будет изме­няться следующим образом (при условии, что температура продук­тов равна температуре окружающего пространства):


Температура,˚C 40 30 20 10 0 -10 -20
Рп—φр 10.8 4.9 2.7 1.3 0.69 0.29 0.11

Таким образом, при прочих равных условиях потеря массы при температуре 40° С примерно в 100 раз больше, чем потеря массы при —20° С, т. е. низкие температуры значительно уменьшают сте­пень усушки продуктов.

Мы говорили уже о том, что потерю массы можно уменьшить с помощью соответствующей упаковки, но даже в этом случае ос­тается явление так называемой внутриупаковочной потери массы.

Биохимические процессы порчи играют исключительно важную роль. Сюда относятся вызванные ферментами катализные процес­сы распада, включая даже микробиологические процессы порчи, поскольку ясно, что и эти процессы при ближайшем рассмотрении тоже носят биохимический характер. При высоких температурах химические изменения вещества проходят очень быстро, а скорость реакций высока, при низких температурах эти изменения часто едва заметны. Понижение температуры приводит к замедлению постоянных химических реакций, т. е. к уменьшению их скорости. Этот факт выражается законом Аррениуса, который связывает аб­солютную температуру Т и логарифм коэффициента химической реакции следующим соотношением:

logK=a—b/T.

Коэффициенты а и b уравнения Аррениуса не зависят от тем­пературы и находятся экспериментальным путем для каждой кон- j кретной реакции. Приведенное соотношение дает возможность вы- i числить скорость химической реакции при любой температуре. На основании этих расчетов и экспериментальных данных можно сде­лать вывод, что скорость наиболее простых (мономолекулярных, ;

бимолекулярных) реакций при повышении температуры на 10° С увеличивается в 2—3 раза и соответственно понижение температу­ры на 10° С уменьшает ее до половины или до одной трети. На ос­новании такой закономерности легко видеть, что скорость химиче­ских и биохимических реакций сильно замедляется с понижением температуры. Предположим, начальная скорость какой-нибудь ре­акции v при понижении температуры на 10° С уменьшилась до '/з своей величины, т. е. стала равна v/3. Если температура умень­шится теперь еще на 10° С, то скорость станет равной уже v/(3-3)=v/32 начальной скорости.