Согласно исследованиям Гора зависимость интенсивности дыхания Р от температуры t в интервале от исходной температуры продукта до температуры хранения (порядка 1—2 °С) можно выразить экспоненциальной функцией следующего вида:
P=P exp(kt),
где Р — интенсивность дыхания при 0°С; k — температурный коэффициент интенсивностидыхания.
Величина k для плодов каждого вида и овощей постоянна, по ее значению судят об устойчивости к хранению.
Пониженные температуры оказывают влияние на все структурные элементы клетки продуктов растительного происхождения и прежде всего мембраны. Следует отметить, что мембраны чрезвычайно чувствительны к малейшим изменениям внешней среды. При этом изменяется прежде всего состояние липидов и функциональной воды.
Согласно современным представлениям липиды, составляющие основу мембран, беспрерывно движутся, образуя так называемое липидное море, в котором плавают молекулы белка по отдельности или сгруппированные в определенных сочетаниях. Часть белков в мембране зафиксирована в определенном положении. Поэтому основными структурными компонентами мембран считают липопротеиновые комплексы со встроенными молекулами воды. Роль этой функциональной воды особенно велика: образуя водородные связи между белками и липидами, именно она определяет структуру мембран. Кроме того, эта вода является активным участником биохимических реакций, происходящих в мембранах.
Под влиянием пониженных температур уменьшается подвижность молекул липидов и белка молекул, что является одной из' причин снижения скорости реакций и нарушения структуры мембран, а также отражается на характере происходящих в клетке процессов.
При резком понижении температуры может произойти частичное разобщение дыхания, в результате чего. Возрастет тепловыделение. При пониженных температурах в клетках продуктов растительного происхождения наблюдается развитие альтернативных окислительных процессов дыхания с участием пероксидазы, сукцинатдегидрогеназы, полифенолоксидазы и аскорбиноксидазы. Замедление скорости внутриклеточных реакций при пониженных температурах приводит к снижению интенсивности дыхания. Однако в результате испарения воды дыхание может возрастать. У разных продуктов интенсивность испарения влаги зависит не только от параметров охлаждающей среды, но и от объекта. Большие размеры паренхимных клеток и межклетников, незначительная толщина покровных клеток, большей частью расположенных в один ряд, обусловливают интенсификацию испарения воды тканями продуктов растительного происхождения, особенно овощных культур.
Основная часть воды диффундирует через систему межклетников в направлении к покровной ткани. Даже плоды, покрытые толстым слоем кутикулярных веществ, например цитрусовые, теряют содержащуюся в них влагу в результате испарения.
Испарение влаги при хранении плодов и овощей нарушает нормальное течение обмена веществ в тканях, вызывает ослабление тургора и их увядание. В результате увядания ускоряются процессы распада содержащихся в клетках веществ, увеличивается их расход на дыхание, нарушается энергетический баланс, что приводит к снижению устойчивости плодов и овощей к поражению микроорганизмами и ухудшению качества.
Под влиянием пониженных температур изменяются вязкость и подвижность протоплазмы. Как известно, вязкость протоплазмы клеток продуктов растительного происхождения в 12— 20 раз больше вязкости воды и зависит от процессов жизнедеятельности клетки. При понижении температуры в связи с возрастанием вязкости может произойти нарушение структуры протоплазмы и тем самым жизнеспособности клетки.
Интервал температур, в котором жизнедеятельность клеток продуктов растительного происхождения сохраняется, довольно широк. Но для успешного холодильного консервирования этот интервал сокращается: от температуры замерзания продукта до 11—12 °С.
Стремясь максимально понизить интенсивность процессов и в то же время не нарушить нормальную жизнедеятельность организма растительного происхождения, плоды и овощи, как правило, хранят обычно при температуре, примерно на 1 °С превышающей температуру замерзания. Исключение составляют продукты растительного происхождения, подверженные при пониженных температурах физиологическим заболеваниям, например бананы хранят при 11—13 °С, цитрусовые—при 3— 4 °С.
При хранении в продуктах растительного происхождения продолжаются, но крайне медленно, физиологические процессы. В плодах снижается интенсивность дыхания и отдаляется состояние климактерия (рис. 11). Из рис. 4 видно, что плоды при пониженных температурах сохраняются в течение более длительного времени. В плодах медленно увеличивается содержание Сахаров, снижается содержание органических кислот, происходят процессы, приводящие к улучшению вкуса, аромата, а часто и цвета плода. К концу хранения усиленно расходуются органические кислоты, содержание их в ткани снижается. Особенно уменьшается количество яблочной кислоты. В результате анаэробного дыхания возрастает содержание этилового спирта и ацетальдегида. Так, через 7,5 мес хранения яблок Ренет Симиренко потери Сахаров составили 20 %, органических кислот — 50 % при одновременном увеличении содержания спирта и ацетальдегида в 4—5 раз.
В плодах частично уменьшается содержание аскорбиновой кислоты. Наименьшие потери витамина С отмечены у цитрусовых, причем в мякоти содержание его практически не изменяется. Чем ниже допустимая температура хранения, тем меньше потери витаминов.
При пониженных температурах хранения у овощей большинства видов интенсифицируются процессы расщепления крахмала и образования сахаров. У овощного гороха, фасоли, сахарной кукурузы и некоторых других культур при хранении, наоборот, синтезируется крахмал.
Картофелю особенно свойственно влияние температуры на направленность реакции крахмал ↔ сахар, что необходимо учитывать при разработке условий его хранения. При понижении температуры в клубнях происходит накопление сахаров, а при повышении увеличивается содержание крахмала, что связано с активностью ферментов, катализирующих прямую и обратную реакции и имеющих различную оптимальную температуру действия. С понижением температуры возрастает растворимость углекислого газа во внутриклеточном соке, изменяется рН последнего и возрастает скорость распада крахмала.
6) ЗАМОРАЖИВАНИЕ И ХРАНЕНИЕ ПРОДУКТОВ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ В ЗАМОРОЖЕННОМ СОСТОЯНИИ
Основными факторами, определяющими степень обратимости замораживания, являются характер кристаллообразования и локализация льда.
Как правило, первые кристаллы льда образуются в межклетниках. При понижении температуры ниже точки замерзания водяной пар в крупных межклетниках начинает конденсироваться в виде капелек воды на прилегающих клеточных стенках. Эта вода и превращается в первые микроскопические кристаллики льда. Эти кристаллики лъда распространяются по межклетникам, обволакивая стенки клеток. Кристаллики бывают в виде линз или разветвленных кристаллов, разрастающихся между клетками эпидермиса и паренхимы. Далее рост кристалликов происходит за счет воды, содержащейся в. клетках, что объясняется разностью между давлениями пара внутри клетки и вне ее. Активность протекания этого процесса зависит от химического состава, проницаемости клеточных стенок, содержания свободной воды в клетке, вязкости протоплазмы, индивидуальных особенностей ткани, степени за-каливания и др.
Вследствие дегидратации температура замерзания содержимого клеток понижается. При понижении температуры в клетках сначала наступает состояние переохлаждения, а затем в них спонтанно возникают центры кристаллизации, приводящие к образованию внутриклеточного льда.
При понижении температуры вязкость протоплазмы возрастает в результате объединения отдельных белков в длинные цепи, образующие, трехмерную сетчатую структуру. Протоплазма вследствие связывания воды переходит в гелеобразное состояние.
При созревании плодов происходит преобразование протопектина, входящего в состав стенок клеток. Образующийся пектин обладает высокими гидрофильными свойствами: он связывает большие количества воды и способствует образованию гелеобразной структуры, что положительно сказывается на обратимости процесса замораживания. В недозрелых плодах содержится больше свободной воды и происходит в основном внутриклеточная кристаллизация, приводящая к гибели плодов.
Клетки листовой ткани окружены оболочками, состоящими из одного слоя стенок, поэтому эта ткань подвергается разрушительному воздействию отрицательных температур.
Содержащийся в овощах крахмал оказывает определенное влияние на характер кристаллизации. Многие овощи, например лук, картофель, покрыты плотной естественной оболочкой, что способствует переохлаждению, тогда как другие, например капуста белокочанная, не имеющая подобной оболочки, не переохлаждается, что объясняется наличием крупных межклетников и большим содержанием свободной воды.
У клубней картофеля в состоянии покоя повышается газо-и водопроницаемость покровных тканей, что обусловливает большую вероятность внеклеточной кристаллизации льда.