Смекни!
smekni.com

Зависимость интенсивности дыхания растительных продуктов от температуры (стр. 4 из 8)

Согласно исследованиям Гора зависимость интенсивности дыхания Р от температуры t в интервале от исходной темпе­ратуры продукта до температуры хранения (порядка 1—2 °С) можно выразить экспоненциальной функцией следующего вида:

P=P exp(kt),

где Р — интенсивность дыхания при 0°С; k температурный коэффициент интенсивностидыхания.

Величина k для плодов каждого вида и овощей постоянна, по ее значению судят об устойчивости к хранению.

Пониженные температуры оказывают влияние на все струк­турные элементы клетки продуктов растительного происхожде­ния и прежде всего мембраны. Следует отметить, что мем­браны чрезвычайно чувствительны к малейшим изменениям внешней среды. При этом изменяется прежде всего состояние липидов и функциональной воды.

Согласно современным представлениям липиды, составляю­щие основу мембран, беспрерывно движутся, образуя так на­зываемое липидное море, в котором плавают молекулы белка по отдельности или сгруппированные в определенных сочета­ниях. Часть белков в мембране зафиксирована в определенном положении. Поэтому основными структурными компонентами мембран считают липопротеиновые комплексы со встроенными молекулами воды. Роль этой функциональной воды особенно велика: образуя водородные связи между белками и липидами, именно она определяет структуру мембран. Кроме того, эта вода является активным участником биохимических реакций, происходящих в мембранах.

Под влиянием пониженных температур уменьшается под­вижность молекул липидов и белка молекул, что является од­ной из' причин снижения скорости реакций и нарушения струк­туры мембран, а также отражается на характере происходя­щих в клетке процессов.

При резком понижении температуры может произойти час­тичное разобщение дыхания, в результате чего. Возрастет теп­ловыделение. При пониженных температурах в клетках про­дуктов растительного происхождения наблюдается развитие альтернативных окислительных процессов дыхания с участием пероксидазы, сукцинатдегидрогеназы, полифенолоксидазы и аскорбиноксидазы. Замедление скорости внутриклеточных реак­ций при пониженных температурах приводит к снижению интенсивности дыхания. Однако в результате испарения воды дыхание может возрастать. У разных продуктов интенсивность испарения влаги зависит не только от параметров охлаждающей среды, но и от объекта. Большие размеры паренхимных клеток и межклетников, незначительная толщина покровных клеток, большей частью расположенных в один ряд, обусловливают интенсификацию испарения воды тканями продуктов раститель­ного происхождения, особенно овощных культур.

Основная часть воды диффундирует через систему межклет­ников в направлении к покровной ткани. Даже плоды, покры­тые толстым слоем кутикулярных веществ, например цитрусо­вые, теряют содержащуюся в них влагу в результате испаре­ния.

Испарение влаги при хранении плодов и овощей нарушает нормальное течение обмена веществ в тканях, вызывает ослаб­ление тургора и их увядание. В результате увядания ускоря­ются процессы распада содержащихся в клетках веществ, уве­личивается их расход на дыхание, нарушается энергетический баланс, что приводит к снижению устойчивости плодов и ово­щей к поражению микроорганизмами и ухудшению качества.

Под влиянием пониженных температур изменяются вязкость и подвижность протоплазмы. Как известно, вязкость прото­плазмы клеток продуктов растительного происхождения в 12— 20 раз больше вязкости воды и зависит от процессов жизнедея­тельности клетки. При понижении температуры в связи с воз­растанием вязкости может произойти нарушение структуры протоплазмы и тем самым жизнеспособности клетки.

Интервал температур, в котором жизнедеятельность клеток продуктов растительного происхождения сохраняется, довольно широк. Но для успешного холодильного консервирования этот интервал сокращается: от температуры замерзания продукта до 11—12 °С.

Стремясь максимально понизить интенсивность процессов и в то же время не нарушить нормальную жизнедеятельность ор­ганизма растительного происхождения, плоды и овощи, как правило, хранят обычно при температуре, примерно на 1 °С превышающей температуру замерзания. Исключение состав­ляют продукты растительного происхождения, подверженные при пониженных температурах физиологическим заболеваниям, например бананы хранят при 11—13 °С, цитрусовые—при 3— 4 °С.

При хранении в продуктах растительного происхождения продолжаются, но крайне медленно, физиологические процессы. В плодах снижается интенсивность дыхания и отдаляется со­стояние климактерия (рис. 11). Из рис. 4 видно, что плоды при пониженных температурах сохраняются в течение более длительного времени. В плодах медленно увеличивается содер­жание Сахаров, снижается содержание органических кислот, происходят процессы, приводящие к улучшению вкуса, аромата, а часто и цвета плода. К концу хранения усиленно расходуются органические кислоты, содержание их в ткани снижается. Осо­бенно уменьшается количество яблочной кислоты. В резуль­тате анаэробного дыхания возрастает содержание этилового спирта и ацетальдегида. Так, через 7,5 мес хранения яблок Ре­нет Симиренко потери Сахаров составили 20 %, органических кислот — 50 % при одновременном увеличении содержания спирта и ацетальдегида в 4—5 раз.

В плодах частично уменьшается содержание аскорбиновой кислоты. Наименьшие потери витамина С отмечены у цитру­совых, причем в мякоти со­держание его практически не изменяется. Чем ниже допустимая температура хранения, тем меньше по­тери витаминов.

При пониженных тем­пературах хранения у ово­щей большинства видов интенсифицируются про­цессы расщепления крах­мала и образования саха­ров. У овощного гороха, фасоли, сахарной кукурузы и некоторых других куль­тур при хранении, наоборот, синтезируется крахмал.

Картофелю особенно свойственно влияние температуры на направленность реакции крахмал ↔ сахар, что необходимо учи­тывать при разработке условий его хранения. При понижении температуры в клубнях происходит накопление сахаров, а при повышении увеличивается содержание крахмала, что связано с активностью ферментов, катализирующих прямую и обратную реакции и имеющих различную оптимальную температуру дей­ствия. С понижением температуры возрастает растворимость углекислого газа во внутриклеточном соке, изменяется рН по­следнего и возрастает скорость распада крахмала.

6) ЗАМОРАЖИВАНИЕ И ХРАНЕНИЕ ПРОДУКТОВ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ В ЗАМОРОЖЕННОМ СОСТОЯНИИ

Основными факторами, определяющими степень обратимости замораживания, являются характер кристаллообразования и локализация льда.

Как правило, первые кристаллы льда образуются в меж­клетниках. При понижении температуры ниже точки замерзания водяной пар в крупных межклетниках начинает конденсироваться в виде капелек воды на прилегающих кле­точных стенках. Эта вода и превращается в первые микроско­пические кристаллики льда. Эти кристаллики лъда распростра­няются по межклетникам, обволакивая стенки клеток. Кристал­лики бывают в виде линз или разветвленных кристаллов, разрастающихся между клетками эпидермиса и паренхимы. Далее рост кристалликов происходит за счет воды, содержа­щейся в. клетках, что объясняется разностью между давлениями пара внутри клетки и вне ее. Активность протекания этого про­цесса зависит от химического состава, проницаемости клеточ­ных стенок, содержания свободной воды в клетке, вязкости протоплазмы, индивидуальных особенностей ткани, степени за-каливания и др.

Вследствие дегидратации температура замерзания содер­жимого клеток понижается. При понижении температуры в клетках сначала наступает состояние переохлаждения, а за­тем в них спонтанно возникают центры кристаллизации, при­водящие к образованию внутриклеточного льда.

При понижении температуры вязкость протоплазмы возрас­тает в результате объединения отдельных белков в длинные цепи, образующие, трехмерную сетчатую структуру. Прото­плазма вследствие связывания воды переходит в гелеобразное состояние.

При созревании плодов происходит преобразование прото­пектина, входящего в состав стенок клеток. Образующийся пектин обладает высокими гидрофильными свойствами: он свя­зывает большие количества воды и способствует образованию гелеобразной структуры, что положительно сказывается на об­ратимости процесса замораживания. В недозрелых плодах со­держится больше свободной воды и происходит в основном внутриклеточная кристаллизация, приводящая к гибели плодов.

Клетки листовой ткани окружены оболочками, состоящими из одного слоя стенок, поэтому эта ткань подвергается разру­шительному воздействию отрицательных температур.

Содержащийся в овощах крахмал оказывает определенное влияние на характер кристаллизации. Многие овощи, напри­мер лук, картофель, покрыты плотной естественной оболочкой, что способствует переохлаждению, тогда как другие, напри­мер капуста белокочанная, не имеющая подобной оболочки, не переохлаждается, что объясняется наличием крупных межклет­ников и большим содержанием свободной воды.

У клубней картофеля в состоянии покоя повышается газо-и водопроницаемость покровных тканей, что обусловливает большую вероятность внеклеточной кристаллизации льда.