Двухпроводная система с временным разделением направлений. В системе с временным разделением направлений интервалы для передачи и приема разделены во времени. При передаче от станции к абоненту цифровой сигнал накапливается в буферном запоминающем устройстве и затем считывается со скоростью в два раза большей. При этом сигналы передаются в виде пакетов. На абонентской стороне сигналы, передаваемые со станции, накапливаются в буферном ЗУ и затем считываются в виде непрерывной последовательности цифрового сигнала.
Рисунок 4.3 - Система передачи с частотным разделением направлений и дифсистемами
Передача сигналов от абонента на станцию происходит аналогичным образом в виде пакетов с использованием незанятого временного интервала. Этот метод получил название «пинг-понг» (или метод с поочередным переключением направлений).
Благодаря тому, что скорость передачи по кабелю в два раза больше скорости передачи сигналов источника (сигналы пакетов станции передаются в кабель полностью синхронизированными по фазе), устраняется переходное влияние на ближнем конце, что было затруднительно при 4-проводной передаче.
Однако, реализация метода «пинг-понг» с наименьшими затратами имеет один недостаток - небольшую зону действия (около 2 км). Поэтому, для организации системы с большой емкостью и большой протяженностью используют различные методы компрессии во времени. Более того, если осуществить синфазную передачу по одному и тому же кабелю, то даже при наличии нескольких трактов типа «пинг-понг» с разными скоростями передачи, можно значительно увеличить протяженность линии.
На рисунке 4.4 представлена структурная схема двухпроводного тракта с временным разделением направлений, обеспечивающего полный дуплексный режим работы. Передача осуществляется в виде пачек импульсов между абонентским полукомплектом АПК и станционным полукомплектом СПК, которым заканчивается цифровая абонентская линия.
Переключение станционного и абонентского оборудования на режимы передачи или приема осуществляется коммутаторами К по сигналам, получаемым от устройства синхронизации (СИНХР). Стыки информационных потоков на обоих концах осуществляются по 4-проводной схеме. Входящая цифровая информация записывается в ЗУ и преобразуется передатчиком в короткие пачки цифровых сигналов, которые с более высокой скоростью передаются по линии. Скорость передачи пачек должна быть такой, чтобы эффективная скорость передачи была равна или превышала скорость цифрового потока на входе, иначе часть информации будет потеряна.
Важной задачей для системы с временным разделением направлений является выбор скорости передачи и длины пачки. Скорость передачи с одной стороны ограничивается пропускной способностью среды передачи, а с другой - определяется требованиями орга-ннзуемых услуг связи. Цифровые ТА в первую очередь должны обеспечивать услуги телефонной связи, для которых требуется скорость 64 Кбит/с, принимаемая за основу при проектировании цифровых телефонных сетей. Однако эта скорость может быть значительно снижена при использовании методов дифференциального и адаптивного кодирования речи, что также позволяет увеличить длину линии связи.
Рисунок 4.4 – Принцип временного разделения направлений передачи
Двухпроводная система с адаптивными эхокомпенсаторами. Как уже упоминалось ранее, для разделения направлений передачи цифровых сигналов могут использоваться дифсистемы. При этом используется тот факт, что при согласовании выходного сопротивления передатчика с комплексным сопротивлением линии, амплитуда сигнала в линии будет равна половине амплитуды передаваемого сигнала. Поэтому принимаемый сигнал может быть получен путем вычитания половины выходного сигнала передатчика из суммарного сигнала в линии (рисунок 4.5).
Однако стандартные дифсистемы не могут обеспечить полного разделения трактов передачи и приема. Чтобы сохранить требуемые характеристики по переходному затуханию на ближнем конце в широкой полосе частот, вводятся эхокомпенсаторы ЭХК (рисунок 4.5), которые препятствуют проникновению импульсов из тракта передачи в тракт приема.
Кроме этого, поскольку определяющее значение на качество передачи оказывает переходное влияние на ближнем конце, то при балансировке дифсистем большое значение имеет протяженность линии передачи. Положение осложняется также наличием проводов различного диаметра и кабелей различных марок, имеющих различные характеристики, в составе одной абонентской линии. Для компенсации разброса величины входного сопротивления абонентской линии в цифровых абонентских линиях предусматривается автоматическая подстройка балансного контура дифсистемы. Однако в этом случае технически очень трудно устранить межсимвольную интерференцию, обусловленную несовершенством АРУ, автоматического корректора отраженного сигнала и системы регулирования собственно эхокомпенсатора.
ПРД - передатчик, ПРМ - приемник, ДС - дифсистема, ЭХК – эхокомпенсатор.
Рисунок 4.5 - Структурная схема системы с адаптивными эхокомпенсаторами
Для преодоления трудностей, связанных с передачей цифровых сигналов по абонентским линиям, были предложены цифровые дифсистемы, объединенные с цифровыми эхо-компенсаторами. Последние обеспечивают подавление эхосигналов не менее чем на 45 дБ. Поэтому применение их на абонентских линиях особенно целесообразно [19].
Абонентский стык ISDN. Использование цифровых абонентских линий, в первую очередь, позволяет обеспечивать пользователей качественной связью, значительно расширить спектр предоставляемых услуг, увеличить скорость передачи. Развитие цифровых телефонных сетей прежде всего связано с технологией ISDN (Integrated Services Digital Network). Кроме телефонии сети ISDN позволяют: передавать данные, объединять удаленные локальные вычислительные сети (ЛВС), обеспечить доступ к Интернет, передавить трафик видеоконференцсвязи.
Технология ISDN включает базовый доступ (BRI или ВА) и первичный доступ (PRI или РА). Базовый доступ предусматривает предоставление абоненту двух каналов по 64 Кбит/с для передачи трафика (типа В) и одного канала сигнализации 16 Кбит/с (канал типа D). Первичный доступ предусматривает предоставление абоненту 30 В-каналов по 64 Кбит/с для передачи трафика и одного D-канала сигнализации (также 64 Кбит/с).
Подключение абонентов к цифровой АТС осуществляется обычно по электрическому двухпроводному кабелю:для базового доступа через интерфейс типа U0; для первичного доступа через интерфейс Uk2.
При этом необходимо отметить, что МСЭ-Т не проводил стандартизацию этих интерфейсов. Для интерфейса U0 официальной причиной считается то, что физические характеристики линий, которые применяются для ISDN, в разных странах отличаются друг от друга, а форма сигнала на стыке должна быть согласована с этими характеристиками. Однако реальной причиной, по мнению многих специалистов, является совпадение интересов компаний, выпускающих телекоммуникационное оборудование, и операторов связи. Первые не хотят вносить изменения в уже разработанные ими различные стандарты для U-интерфейса, а вторые имеют возможность зарабатывать на аренде терминального оборудования.
Несмотря на это в абонентском доступе ISDN нет такого многообразия, как при цифровом абонентском доступе. В настоящее время в мире используется в основном три типа U-интерфейса, которые различаются протоколами линейного кодирования: 2В1Q, 4ВЗР и Upo. Из них в Европе наибольшее распространение получило использование кода 2В1Q с обеспечением дистанционного питания терминального оборудования через интерфейс U номинальным напряжением 90-120 В. Такое решение поддерживается практически всеми европейскими компаниями (Siemens, Ericsson, Alcatel, Italtel и др.). Поэтому существует большая степень вероятности, что терминальное оборудование абонента будет взаимодействовать с используемой цифровой АТС.
На стороне цифровой АТС абонентские линии включаются в линейные комплекты (LT) и станционные окончания (ЕТ), которые для каждой станции являются частью оборудования абонентских комплектов.
Структура интерфейса Uk2 также не стандартизирована, поскольку обычно данный интерфейс соответствует физическим и канальным характеристикам, а также цикловой структуре стандартного канала Е1 (рекомендации G.703, G.704 МСЭ-Т).
Основные различия между возможностями интерфейсов U0 и Uk2 состоят в следующем:
- соединение для PRJ возможно только для режима «точка-точка». BR1 может поддерживать режим соединения «точка-многоточка»;
- питание интерфейса PRJ должно обеспечиваться либо отдельным каналом питания, либо отдельным блоком питания;
- физический уровень PRJ постоянно активен (что обусловлено применением этого интерфейса в основном для оборудования, работающего постоянно). В связи с этим процедуры активации и дезактивации интерфейса PRJ отсутствуют;
- для организации обмена сигнальной информацией в PRJ и в BRI используется выделенный канал (D-канал), который обычно соответствует 16-му канальному интервалу ИКМ.
В интерфейсах типа U могут использоваться протоколы, основные из которых приведены в таблице 4.1. В Европе наибольшее распространение из них получил протокол E-DSS1 (другие названия евро-ISDN, ETSI). В России и Беларуси E-DSS1 одобрен в качестве национального стандарта для ISDN сетей.
Таблица 4.1 - Протоколы для сети ISDN
Протокол | Взаимодействие с АТС | Область распространения |
E-DSS1 | со всеми | Европа |
CorNet-T | Siemens | Европа |
CorNet-N | Siemens | Европа |
1TR-6 | Bosch/Telenorma | Германия |
TN1R6-T | Bosch/Telenorma | Германия |
TN1R6-N | Bosch/Telenorma | Германия |
N1-1, N1-2 | Lucent, NORTEL, Harris | Северная Америка |
Как показано на рисунок 4.6, к цифровой АТС подключаются сетевые окончания NT: NTBA или NTPA. (В некоторых случаях при первичном доступе функции NTPA могут включаться в УПАТС.) Назначение сетевого окончания - преобразование интерфейса U в интерфейс So (интерфейс «пользователь-сеть») для подключения ISDN оборудования. Интерфейс S0 использует 4-проводную линию связи и стандартизирован в рекомендациях МСЭ-Т 1.430, Q.921, Q.931. Ряд цифровых АТС имеют встроенные стыки типа S0 для непосредственного включения ISDN оборудования - в случае, когда расстояние между оборудованием и АТС не превышают нескольких сотен метров.