Студент ФРЭ гр.741301 Дашенков В.М.
Домасевич В.Л.
1. Введение и постановка задачи
Теория радиотехнических цепей и сигналов является фундаментальной дисциплиной, которая своим содержанием определяет профессиональную подготовку инженеров.
Влияние этой научной теории огромно и в настоящее время, и дальнейшее развитие теории очень важно для современного общества, и будет происходить в обозримом будущем. Это объясняется тем, что потребность в качественной передаче и обработке непрерывно растущих объемов информации постоянно нарастает. При этом основная проблема, заключающаяся в отыскании методов передачи и приема, обеспечивающих получение требуемой достоверности принимаемых сообщений и повышение скорости передачи, все еще остается актуальной.
2. Спектральные свойства сигнала
Сигнал и событие
Событие (получение записки, наблюдение сигнальной ракеты, прием символа по телеграфу) является сигналом только в той системе отношений, в которой сообщение опознается значимым (например, в условиях боевых действий сигнальная ракета — событие, значимое только для того наблюдателя, которому оно адресовано). Очевидно, что сигнал, заданный аналитически, событием не является и не несет информацию, если функция сигнала и её параметры известны наблюдателю.
В технике сигнал всегда является событием. Другими словами, событие - изменение состояния любого компонента технической системы, опознаваемое логикой системы как значимое, является сигналом. Событие, неопознаваемое данной системой логических или технических отношений как значимое, сигналом не является.
Временной и частотный способ представления сигналов. Спектр сигнала.
Есть два способа представления сигнала в зависимости от области определения: временной и частотный. В первом случае сигнал представляется функцией времени s(t) характеризующей изменение его параметра.
Кроме привычного временного представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты. Действительно, любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала.
Для перехода к частотному способу представления используется преобразование Фурье:
S(ω)=
.Функция S(ω) называется спектральной функцией или спектральной плотностью.
Поскольку спектральная функция S(ω) является комплексной, то можно говорить о спектре амплитуд | S(ω) | и спектре фаз φ(ω) = arg(S(ω)). Физический смысл спектральной функции: сигнал s(t) представляется в виде суммы бесконечного ряда гармонических составляющих (синусоид) с амплитудами
, непрерывно заполняющими интервал частот от 0 до , и начальными фазами φ(ω). Размерность спектральной функции есть размерность сигнала, умноженная на время. Параметры сигналов
Мощность сигнала P =
.Удельная энергия сигнала E
.Длительность сигнала (T) определяет интервал времени, в течение которого сигнал существует (отличен от нуля).
Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей D = 10lgPmax / Pmin.
Ширина спектра сигнала F — полоса частот, в пределах которой сосредоточена основная энергия сигнала[~95%].
База сигнала есть произведение длительности сигнала на ширину его спектра B = TF. Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: тем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной.
Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума.
Объем сигнала характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазон
V = FTD.
Итак, среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисов для представления радиотехнических сигналов, исключительное место занимают гармонические (синусоидальные и косинусоидальные) функции. Значение гармонических сигналов для радиотехники обусловлено рядом причин.
В радиотехнике приходится иметь дело с электрическими сигналами, которые связаны с передаваемыми сообщениями принятым способом кодирования.
Можно сказать, что электрический сигнал представляет собой физический (электрический) процесс, несущий в себе информацию. Количество информации, которое можно передать с помощью некоторого сигнала, зависит от основных его параметров: длительности, полосы частот, мощности и некоторых других характеристик. Важное значение имеет также уровень помех в канале связи: чем меньше этот уровень, тем большее количество информации можно передать с помощью сигнала с заданной мощностью. Прежде чем говорить об информационных возможностях сигнала, необходимо ознакомиться с его основными характеристиками. Целесообразно рассмотреть отдельно детерминированные и случайные сигналы.
Детерминированным называют любой сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью равной единице.
Примерами детерминированных сигналов могут служить импульсы или пачки импульсов, форма, величина и положение во времени которых известны, а также непрерывный сигнал с заданными амплитудными и фазовыми соотношениями внутри его спектра. Детерминированные сигналы можно подразделить на периодические и непериодические.
Периодическим называется любой сигнал, для которого выполняется условие s(t)=s(t+kТ), где период Т является конечным отрезком, а k – любое целое число.
Простейшим периодическим детерминированным сигналом является гармоническое колебание. Строго гармоническое колебание называют монохроматическим. Этот заимствованный из оптики термин подчёркивает, что спектр гармонического колебания состоит из одной спектральной линии. У реальных сигналов, имеющих начало и конец, спектр неизбежно размывается. Поэтому строго монохроматического колебания в природе не существует. В дальнейшем под гармоническим и монохроматическим сигналом условно будет подразумеваться колебание. Любой сложный периодический сигнал, как известно, можно представить в виде суммы гармонических колебаний с частотами, кратными основной частоте w = 2*Pi/T. Основной характеристикой сложного периодического сигнала является его спектральная функция, содержащая информацию об амплитудах и фазах отдельных гармоник.
Непериодическим детерминированным сигналом называется любой детерминированный сигнал, для которого выполняется условие s(t)
s(t+kT). Как правило, непериодический сигнал ограничен во времени. Примерами таких сигналов могут служить уже упоминавшиеся импульсы, пачки импульсов, «обрывки» гармонических колебаний и т.д. Непериодические сигналы представляют основной интерес, так как именно они преимущественно используются в практике.
Основной характеристикой непериодического, как и периодического сигнала, является его спектральная функция.
К случайным сигналам относят сигналы, значения которых заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы. Такими функциями являются, например, электрическое напряжение, соответствующее речи, музыке, последовательности знаков телеграфного кода при передаче неповторяющегося текста. К случайным сигналам относится также последовательность радиоимпульсов на входе радиолокационного приёмника, когда амплитуды импульсов и фазы их высокочастотного заполнения флуктуируют из-за изменения условий распространения, положения цели и некоторых других причин. Можно привести большое число других примеров случайных сигналов. По существу, любой сигнал, несущий в себе информацию, должен рассматриваться как случайный. Перечисленные детерминированные сигналы, «полностью известные», информация уже не содержат. В дальнейшем такие сигналы часто будут обозначаться термином «колебание».
Для характеристики и анализа случайных сигналов применяется статистический подход. В качестве основных характеристик случайных сигналов принимают:
а) закон распределения вероятностей.