Определим ток наиболее нагруженного элемента:
– Определяем минимальную ширину (мм) печатного проводника по постоянному току для цепей питания.
,где jдоп= 48 А/мм2 – допустимая плотность тока, выбирается по таблице 4.5 [2]; t=35мкм – толщина проводника.
мм– Определим номинальное значение монтажных отверстий d:
где dэ=0,7 мм – максимальный диаметр вывода устанавливаемого ЭРЭ; Ddn.o=0.1 мм – нижнее предельное отклонение от номинального диаметра таблица 4.6 [2]; Г=0,,2 – разница между минимальным диаметром отверстия и максимальным диаметром вывода.
мм– Рассчитываем диаметр контактных площадок для двусторонней печатной платы, изготовленной комбинированным позитивным методом
где D1min – минимальный эффективный диаметр площадки, мм:
где bm=0.05 мм – расстояние от края просверленного отверстия до края контактной площадки; dd=0.08 мм и dр=0,2 мм – допуски на расположение отверстий и контактных площадок; dmax – максимальный диаметр посверленного отверстия:
где Dd=0.05 – допуск на отверстия таблица 4.6 [2]:
мм мм мм– Определим ширину проводников
мм– Определим минимальное расстояние между элементами проводящего рисунка:
Минимальное расстояние между проводником и контактной площадкой:
где L0=2.5 мм – расстояние между центрами рассматриваемых элементов, dl=0.05 – допуск на расположение проводников таблица 4.6 [2]; Dmax – максимальный диаметр контактной площадки:
Минимальное расстояние между двумя контактными площадками:
ммМинимальное расстояние между двумя проводниками:
ммРассчитаем конструкцию индуктивностей L1=L2. Определим уточненные значения индуктивностей для типовых значений емкостей на частоте f=30МГц по формуле:
, нГнРассчитываем диаметр провода катушек:
,где I – радиочастотный ток, А;
f – частота тока, МГц;
D – разность температуры провода и окружающей среды, DТ=40К.
ммШаг намотки, при котором достигается наименьшее активное сопротивление катушки току радиочастоты:
g=2d
g=2×1.4=2.8 мм
Рассчитываем число витков спирали катушки:
,где Lрасч – Расчитанное значение индуктивности, мкГн; D – диаметр катушки, см; F(C/D) – коэффициент формы катушки, определяемый по графику на рисунке 10.3 [3].
виткарассчитаем катушки L5=L6. Определяем уточненный номинал индуктивности:
нГнРассчитаем диаметр провода катушек:
ммРассчитаем шаг намотки:
g=2×3=6 мм
Рассчитаем число витков спирали катушки:
витка4. Оценка качества
Прикидочный расчет
В начале для определённого класса объектов выбирается один из типов показателей надёжности: интервальный, мгновенный, числовой таблица 6 в [1]. Из нее выбираем, с учетом вида объекта (ремонтируемый с допустимыми перерывами в работе), числовые показатели надежности, т.е. mt– средняя наработка между отказами, mB – среднее время восстановления объекта, КГ – коэффициент готовности. Таким образом, при конструкторском проектировании РЭС не требуется рассчитывать все ПН, необходимо, прежде всего, определить вид объекта и выбрать те ПН, которые наиболее полно характеризуют надёжностные свойства разрабатываемого объекта.
Для дальнейшего выбора показателей надежности установим шифр из четырёх цифр, по рекомендации таблицы 7 [1]: 2312. Что соответствует: по признаку ремонтопригодности — ремонтируемому (2), по признаку ограничение продолжительности эксплуатации— режим использования по назначению – непрерывный (1), по признаку доминирующий фактор при оценке последствий отказа – факт выполнения или не выполнения изделием заданных ему функций в заданном объеме(2).
Исходя из этих данных по таблице 8 [1] определяются показатели надежности. Полученные результаты сравниваем с таблицей 6 [1]. Окончательно получаем, что в связи с тем, что приёмник ремонтируемый, восстанавливаемый, с допустимыми перерывами в работе, то ПН будут mt, mв, Кг, Т. е. мы выбрали числовые ПН: наработку на отказ – mt, среднее время восстановления объекта – mв, коэффициент готовности – Кг.
Ответственным этапом в проектировании надёжности РЭА является обоснование норм, т. е. допустимых значений для выбранных показателей надежности. Это объясняется следующими причинами. Во-первых, от правильности результатов данного этапа зависит успех и смысл всех расчётов надёжности, т. к. здесь мы определяем, какое значение показателей надежности можно считать допустимым. Во-вторых, нет общих правил и рекомендаций для установления норм надёжности различных объектов, многое зависит от субъективных факторов и опыта конструктора. В-третьих, любая ошибка на данном этапе ведёт к тяжёлым последствиям: занижение нормы ведёт к повышению потерь от ненадёжности, завышение – от дороговизны. Итак, из таблицы 9 [1] мы определяем исходя из группы аппаратуры по ГОСТ 16019–78 – возимая на автомобилях; по числу ЭРЭ (700), что mt допустимая равна 3000 часов.
Надёжность РЭА в значительной степени определяется надёжностью элементов электрической схемы (ЭЭС) и их числом. Поэтому точность расчёта ПН проектируемого объекта относительно отказов, обусловленных нарушениями ЭЭС, имеет большое значение. Заметим, что к ЭЭС следует относить места паек, контакты разъёмов, крепления элементов и т. д. При разработке РЭА можно выделить три этапа расчёта: прикидочный расчёт, расчёт с учётом условий эксплуатации и уточнённый расчёт. Прикидочный расчёт проводится с целью проверить возможность выполнения требований технического задания по надёжности, а также для сравнения ПН вариантов разрабатываемого объекта. Прикидочный расчёт может производиться, и когда принципиальной схемы ещё нет, в этом случае количество различных ЭЭС определяется с помощью объектов аналогов. Исходные данные и результаты расчёта представлены в таблице 1. По данным таблицы рассчитываются граничные и средние значения интенсивности отказов, а также другие показатели надёжности.
Следует учесть то, что после нахождения интенсивности отказов элементов одной платы необходимо для определения всего приёмника произвести умножение на 8, что и будет отражаться в расчёте.
Таблица 2.
Исходные данные для прикидочного расчета надежности РЭА
Порядковый номер и тип элемента | Число элемен. каждого типа nj | Границы и среднее значение интенсивности отказов | Суммарное значение интенсивности отказов элементов определенного типа | ||||
imin | imax | iср | nimin | nimax | niср | ||
1. Резисторы постоянные | 330 | 0,4 | 0,6 | 0,5 | 18,8 | 28,2 | 23,5 |
2. Конденсаторы | 150 | 0,263 | 0,513 | 0,31 | 11,05 | 21,55 | 13,04 |
3. Микросхемы | 285 | ||||||
4. Диоды | 120 | 0,36 | 0,678 | 0,439 | 1,44 | 2,71 | 1,76 |
5. Транзисторы | 60 | 0,370 | 0,840 | 0,740 | 3,33 | 7,56 | 6,66 |
6. Индикаторы единичные | 12 | 0,51 | 1,018 | 0,50 | 6,12 | 12,22 | 6 |
7. Тумблеры | 5 | ||||||
8. Реле | 50 | ||||||
9. Разъем | 38 | 0,10 | 0,20 | 0,15 | 0,4 | 0,6 | 0,8 |
10. Основание ПП (текстолит) | 16 | 0,006 | 0,010 | 0,008 | 0,006 | 0,008 | 0,010 |
11. Пайка | 1500 | 0,083 | 0,150 | 0,117 | 26,15 | 47,25 | 36,86 |
Произведём вычисления: