Таблица 1. Параметры аналогов блока
Наименование характеристики | Ед.изм. | Исследуемые объекты | |||
1. Диапазон радиочастот | МГц | 2 – 30 | 30 – 88 | 3 – 30 | 1,5 – 30 |
2. Выходная мощность | Вт | 80 | 60 | 40 | 40 |
3. Входная мощность | Вт | 0,5–2 | 0,5 – 1 | 0,4–2 | 0,4–2 |
4. Вид управления | – | Ручн. | Авт. | Авт. | Авт. |
5. Рабочая температура | °С | -40¸60 | -5¸55 | 5¸40 | 5¸40 |
6. КПД | % | 60 | – | 50 | 30 |
7. Среднее время наработки на отказ | Ч | – | – | 3000 | 3200 |
8. Масса | Кг | – | – | 3 | 2,8 |
9. Габаритные размеры | Мм | 332´305´64 | – | 431´464´170 | 371´90,5´161 |
В связи с узкоспециализированным назначением радиопередающего устройства, к конструкции блока предварительного усилителя предъявляется особое значение. Размеры корпуса блока предварительного усилителя должны быть соответствовать габаритным размерам места установки блока, т.е. его ширина, длинна и высота не должны превышать эти размеры.
В условиях эксплуатации радиопередающего комплекса предусмотрены быстрая поблочная разборка и транспортировка всего комплекса. Но с учетом того, что блок эксплуатируется в стационарных условиях, то нет необходимости для его дополнительного крепления и амортизации.
Обычно масса несущей конструкции радиоэлектронной аппаратуры составляет примерно 70% от общей массы аппаратуры. Поэтому задача уменьшения массы базовой несущей конструкции является весьма актуальной. Габаритные размеры и масса блока во многом зависит от применяемой в нем системы охлаждения. Для уменьшения габаритных размеров блока в качестве системы охлаждения для элементов, работающих в критических режимах, применяем теплоотвод потоком воздуха, нагнетаемого вентиляторами. Для более эффективного охлаждения блока кожух выполнен с перфорацией. Внутренние ячейки блока выполнены по многомодульному типу. Каждый модуль может быть легко заменен в случае его выхода из строя.
Рассматриваемый блок должен иметь облегченную конструкцию, поэтому в качестве материала несущей конструкции выбираем сплавы алюминия, а токопроводящие элементы выполним из меди. Для антикоррозионной стойкости все платы покрываются лаком ЭП–730. Для обеспечения внешней эстетичности, а также для антикоррозионной стойкости наружные поверхности покрываются эмалью.
Конструкция предварительного усилителя мощности состоит из радиатора (поз. 33) с установленными на него передней (поз. 2) и задней (поз. 31) панелями, также на радиатор на втулки (поз. 32) устанавливаются платы печатные с усилительными каскадами. Снизу на радиатор установлена направляющая (поз.27), для предварительного позиционирования блока внутри БУМ. Справа на радиатор на втулки (поз.40) устанавливается блок управления усилителя предварительного.
На передней панели для контроля режимов работы блока предварительного усилителя мощности устанавливается розетка (поз.101) типа РП–15ГВ. Также для регулировки параметров блока управления предварительного усилителя мощности сделаны 3 отверстия. Но с учетом того, что все это используется только при регулировке блока, все эти позиции закрываются фальшпанелью (поз. 25).
На задней панели устанавливаются штыри ловители (поз.39) для более точного позиционирования блока. Для точного вхождения вилки типа РП10–11ЛВ, на ней установлены штыри. Входной и выходной сигнал предварительного усилителя мощности поступает через штекеры ВЧ входа и ВЧ выхода установленных на задней панели (поз.11).
Габаритные размеры блока 320´160´30 мм. Масса 2.8 кг.
В проектируемом блоке требуется отвод тепла от транзисторов усилительных каскадов. Для отвода тепла в конструкции устройства предусмотрены два осевых электровентилятора 1,0 ЭВ–1,4–4. Процесс теплообмена радиоэлектронных аппаратов охлаждаемых продуваемым через них воздухом, носит очень сложных характер и не поддается точному расчету. Тепловой режим аппарата зависит от следующих параметров: формы и размеров кожуха, шасси и радиодеталей, расположения деталей на шасси, мощности отдельных источников тепла и их расположения в аппарате, размеров, формы и расположения устройств для подвода и отвода воздуха, расхода и температуры воздуха, а также условий теплообмена снаружи аппарата.
Перегрев полупроводниковых приборов можно уменьшить, путем увеличения теплоотдающей поверхности, т.е. установкой их на радиатор. Методика расчета приведена в [2].
Исходными данными при проектировании или выборе радиатора являются: предельная температура рабочей области транзистора tp=100°С; мощность рассеиваемая на приборе Р=25Вт; температура окружающей среды t0=35°С; внутреннее тепловое сопротивление прибора между рабочей зоной транзистора и корпусом Rвн=0,425°С/Вт.
– Определим перегрев места крепления прибора с радиатором:
где Rк – тепловое сопротивление контакта между прибором и радиатором, °С/Вт,
,
Sк= 0,42×10-3м2 – площадь контактной поверхности.
°С/Вт °С– определим в первом приближении средний перегрев основания радиатора:
°С– Выбираем тип радиатора в первом приближении с помощью графиков представленных на рисунке 4.21 [2].
В соответствии с графиком выбираем ребристый радиатор в условиях вынужденного охлаждения.
– определим коэффициент теплоотдачи радиатора по графикам на рисунке 4.25 [2]. В соответствии с графиком aэф=125Вт/м2град
– находим площадь основания радиатора
м2– Определим средний перегрев основания радиатора во втором приближении
где
; ;aр – коэффициент теплопроводности материала радиатора, Вт/мград;
Sp – толщина основания радиатора, м.
Выберем в качестве материала радиатора алюминий, у которого lр=208 Вт/мград, а толщина основания dр=0,023м.
DtS=0.008м2
Из сделанных расчетов можно сделать вывод, что суммарная площадь радиатора всех транзисторов не будет выходить за пределы габаритных размеров блока и мы можем применить данную схему охлаждения транзисторов.
В зависимости от условий эксплуатации определим группу жесткости по ОСТ4.ГО.077.000 обслуживающие соответствующие требования к конструкции печатной платы, используемому материалу основания проводящему рисунку и т.д. Для нашей платы выбираем вторую группу жесткости.
Двусторонняя печатная плата с металлизированными монтажными отверстиями и переходными отверстиями характеризуются высокими коммутационными свойствами, повышенной прочностью соединения вывода навесного монтажа с проводящим рисунком платы, относительно высокой стоимостью конструкции. Для платы усилителя выбираем двустороннюю печатную плату с металлизированными и переходными отверстиями.
Габаритные размеры печатной платы должны соответствовать ГОСТ10317-79 при максимальном соотношении сторон 5:1. Согласно ГОСТ10317-79 выбираем прямоугольную форму платы. Размеры печатной платы определяются типом применяемых навесных элементов и размерами модуля. Для нашего блока выбираем платы размерами 110´170 мм и 80´100мм.
Сопрягаемые размеры контура печатной платы должны иметь предельные отклонения по 12 квалитету ГОСТ 25347-82, несопрягаемые размеры контура печатной платы должны соответствовать предельным отклонениям по14 квалитету ГОСТ25347-82.
Толщину печатной платы определим исходя из используемой элементной базы и действующей механической нагрузки. Толщину печатной платы устанавливаем по ТУ на исходный материал ГОСТ10316-78.
Материал основания печатной платы выбираем согласно ГОСТ10316-78, ГОСТ23751-79 или ТУ. Для печатной платы эксплуатируемой в условиях соответствующих группе 1.6 по ОСТ4.ГО.077.000 рекомендовано применять материалы но основе текстолита. Платы усилителя изготавливаем из стеклотекстолита СФ-2-50-2 ГОСТ10316-78 фольгированная с двух сторон. Толщина фольгированного слоя 35 мкм толщина платы 2 мм.
Проведем расчет печатного монтажа платы предварительного усилителя. Методика расчета приведена в [2]. Расчет произведем в следующей последовательности:
– Исходя из технологических возможностей производства, выбираем комбинированный позитивный метод изготовления печатной платы. Класс точности 3 по ГОСТ 23752-79.