Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 67 из 102)

Отечественной промышленностью разработаны и выпускаются пневмодозаторы ЦДЖ-901, МДУ-1, Пульс-1, совмещенные смесители-дозаторы типа ГГМ 3.283.003 для двухкомпонентных клеев.

Перспективным устройством является полуавтоматический дозатор КН-901. Нанесение адгезива на поверхность осуществляется автоматически с позиционированием с помощью двухкоординатного шагового двигателя с управлением процессом от встроенного микропроцессора. Объем капли рассчитывается по времени истечения адгезива (могут использоваться и двухкомпонентные составы ). Производительность устройства — 300 капель в 1 ч.

Метод группового переноса капель адгезива заключается в одновременном нанесении адгезива на все точки поверхности платы соблюдая нужную толщину слоя. Специальный держатель с определенно установленными иголками опускается в емкость с адгезивом, уровень которого должен быть постоянным. В зависимости от диаметра иголок забирается некоторое количество адгезива (рис.3.10.). Далее держатель приподнимается и совмещается с печатной платой. При касании платы на ее поверхности в соответствии с топологией остаются капли адгезива. Адгезив должен обладать точно определелѐнной и постоянной вязкостью, поэтому к нему предъявляются повышенные требования и не все типы адгезивов им удовлетворяют. Необходимо иметь ввиду, что при таком способе объем капли может увеличиваться из-за «обрастания» иголки остатками адгезива. Поэтому необходима постоянная очистка оснастки.

1 — ванна с адгезивом; 2 — держатель с набором игл; 3 — плата печатная

Рис. 3.10. Нанесение адгезива методом капельного переноса:

Рассматриваемый метод наиболее эффективен для крупносерийного производства, когда объем выпускаемых однотипных изделий большой (оснастка должна изготавливаться или переналаживаться для каждой новой топологии). Оборудование, реализующее метод просто в использовании, ремонте и обслуживании, имеет сравнительно низкую стоимость.

Как уже упоминалось, отверждение адгезива осуществляется в зависимости от состава при удалении или протекании реакции полимеризации. При этом применяются два метода активации: термическая и совмещенная, облучение ультрафиолетовым излучением с последующей термической обработкой. Наиболее широко используется полимеризация при нагреве в конвекционных печах (парогазовой фазе) или в инфракрасных печах. В конвекционных печах процесс происходит при более низких температурах, но требует более длительного времени. За счет меньшей инерционности нагрева инфракрасные печи позволяют проводить полимеризацию при более высоких температурах за более короткий промежуток времени (3-5 мин. При 120-100 °С). Кроме того, эти методы успешно применяются для пайки ПМ - изделий.

Полимеризация в ультрафиолетовом излучении, как отмечалось выше, чаще всего применяется в комбинации с нагревом. При ультрафиолетовом облучении на поверхности адгезива образуется затвердевшая пленка, препятствующая его растеканию на соседние конструктивные элементы печатного монтажа.

3.5. ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ДЛЯ НАНЕСЕНИЯ ПРИПОЙНОЙ ПАСТЫ

3.5.1. ХАРАКТЕРИСТИКА СВОЙСТВ ПРИПОЙНЫХ ПАСТ И

ОСОБЕННОСТИ ИХ ВЫБОРА

Припойные пасты широко используются в технологии ПМ и их физические свойства оказывают значительное влияние на характеристики паяных соединений. Поэтому к ним добавляется ряд специфических требований. Прежде всего паста после нанесения должна сохранять свою форму, положение и требуемую толщину, обладать клеящими свойствами (для исключения сдвига во время пайки). B то же время паста должна иметь относительно низкую вязкость (для обеспечения технологичности при нанесении еѐ черѐз трафарет).

В состав припойных паст входят материал припоя, флюс, связующее вещество, органический растворитель и различные специальные добавки, придающие пасте требуемые свойства, например вязкость. Основной составляющей частью припойной пасты является порошок припоя, получаемый путем пульверизации расплава припоя через специальные сопла. Порошок должен быть сферическай формы (согласно стандарту IPC-SP-819, отношение длинны к ширине должно находиться в пределах 1,5—1,0) c диаметром шарика припоя от 0,125 до 0,04 мм. Чем мельче порошок, тем качественнее паста (c токи зрения реологических свойств), но зато резко сокращается срок еѐ сохранности из-за повышенной окисляемости припоя. Следует обратить внимание, что при использовании пасты с основной фракцией порошка припоя менее 40 мкм ухудшается качество отмывки из-за большого количества окисленных частиц, свыше 70 мкм — образуются крупные шарики припоя, которые, попадая под корпуса компонентов и внедряясь в защитный слой ПП, трудно удаляются, что может вызвать замыкание. Наилучшие результаты получаются при использовании припойной пасты с фракцией порошка 40—60мкм (рис. 3.11).

Рис. 3.11. Микрофотография припойной пасты с хорошим качеством диспергирования частиц порошка припоя

Припойные пасты характеризуются сложными реологическими свойствами. С точки зрения реологии она представляет собой тиксотропную, псевдоупругую смесь. Тиксотропность — это свойство жидкостей изменять вязкость во времени под действием постоянного сдвигающего усилия. Такое явление связано с наличием петли гистерезиса в зависимости напряжения сдвига от скорости сдвига при увеличении и последующем уменьшении последней. Тиксопропное поведение припойной пасты вызывает изменение ее вязкости в течение времени от последнего перемешивания до нанесения на плату, что отрицательно влияет на повторяемость ее технологических свойств. Аналогичные результаты получаются при измерении вязкости пасты в различные моменты времени после перемешивания.

На реологическое поведение пасты при трафаретной печати оказывает влияние несколько факторов, основными являются форма и размеры частиц, содержание припоя в пасте. Как уже упоминалось, частицы с формой, близкой к сферической, оказывают наименьшее абразивное воздействие на трафарет, что увеличивает срок их службы. Конечно же, при неизменных условиях окружающей среды вязкость паст будет снижаться с уменьшением размера частиц. Следует отметить также, что свойства паст можно изменять с помощью специальных модификаторов.

Обычно содержание припоя в пасте составляет 85—92%. Чаще всего состав припойных паст выражается как соотношение ингредиентов, входящих в его состав, например: 63/37— 63% олова и 37% свинца (наиболее широко применяемый состав для ПМ). С увеличением содержания припоя затруднятся нанесение пасты через трафарет, возрастают также развиваемые ракелем усилия, однако уменьшается и растекание припоя при его нагреве, что снижает вероятность образования перемычек и наплывов. Если в отдельных деталях и корпусах существуют серебряные контакты (выводы), то используются серебросодержащие припойные пасты (содержание серебра не менее 2%). Такие пасты имеют повышенную коррозионную стойкость и пластичность, предотвращают миграцию серебра из выводов, а главное снижают результирующую силу поверхностного натяжения при пайке.

В качестве связующего вещества в припойных пастах используют добавки эпоксидных смол. Если паста наносится на контактные площадки менее 1,25 мм, рекомендуется применять припойную пасту с этилцеллюлозой. Реже используют неаргонические соединения (оксид висмута, боросиликатные стекло и др.). Клеящая добавка должна быть согласована по своим физико-химическим свойствам с материалами флюса и растворителя.

Как было отмечено выше в технологии ПМ главным образом применяются оловяно-свинцовые припои, характеристики которых приведены в табл. 3.2. При выборе припоя учитываются требования механической прочности, электрические и теплофизические характеристики, а также их стоимость. Наиболее часто применяются эвтектические сплавы 60Sn/40Pb, 63Sn/37Pb. Сплавы с малым содержанием олова (5Sn/95Pb, 10Sn/90РЬ) являются наиболее дешевыми, однако имеют повышенную температуру плавления и используются для лужения выводов чип-компонентов. Соединение 50Sn/50Pb отличается более низкой смачиваемостью.

Сплавы с добавками серебра (62Sn/36Pb/2Ag) применяются для пайки компонентов с серебрянными покрытиями выводов, так как наличие серебра в припое снижает растворимость серебряного покрытия выводов в олове. Эти припои обладают высокой прочностью.

Еще более высокой прочностью, а также повышенной смачиваемостью по сравнению с оловянно-свинцовыми припоями отличаются сплавы олово—серебро (95Sn/5Ag и эвтектика 96,5Sn/3,5Ag). Характерной особенность этих композиций является также высокая устойчивость к термоциклированию, что обусловливает перспективность их применения для пайки элементов с различным ТКЛР. Конечно же, стоимость таких припоев намного выше, чем оловянно-свинцовых. Устойчивость к термоциклированию повышается еще больше при введении в этот сплав сурьмы. Кроме того, используется и двойной сплав олово—сурьма (99Sn/lSb), который улучшает прочность соединения и рекомендуется для применения в условиях повышенной ползучести.

Таблица 3.2. Состав и основные характеристики припоев

Состав

Свойства и область применения

75Pb/25Sn

50Pb/50Sri

25Pb/77Sn

Минимальное растворение золота, ' более высокая пластичность по сравнению с припоями Sn/Pb; пайки выводов ИЭТ
37,5Sn/37,5Pb/251n Хорошая смачиваемость; не рекомендуется для пайки золота

80Au/20Sn

Наилучший припой для золота; пайки выводов

63Sn/37Pb

60Sn/40Pb

50Sn/50Pb 10Sn/90Pb 5Sn/95Pb

Наиболее широко используемые сплавы для ПМ, низкая стоимость, хорошие соединения; не рекомендуется для золота и серебра, так как легко их растворяют; для выводов чип-элементов

62Sn/36Pb/2Ag 10Sn/88Pb/2Ag lSn/97,5Pb/l,5Ag

Припои с небольшой добавкой серебра для снижения растворимости серебряных покрытий; не рекомендуется для золота, сплав 62/36/2 является наиболее прочным среди Sn/Pb припоев

96,5Sn/3,5Ag

95Sn/5Ag

Широко используемые припои, обеспечивающие высокую прочность без применения РЬ; минимальный р£ст-вор серебра; не рекомендуется для золота

42Sn/58Bi

65Sri/35Bi

40Sn/40Pb/20Bi

Низкотемпературный эвтектичный сплав большой прочности

Для пайки компонентов, чувствительных к перегреву, применяются сплавы с добавками висмута (температура плавления121°С для 40Sn/40Pb/20Bi), которые имеют относительно высокую прочность.