Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 65 из 102)

3.3.1.2 ТИПОВАЯ СХЕМА ПРАКТИЧЕСКОЙ РЕАЛИЗАЦИИ ТЕХНОЛОГИИ ПМ ТИПА 2.

Так как тип 2 является комбинацией типов 1 и 3, то он использует все операции, характерные для этих типов (рис. 3.6). Это наиболее сложный вариант для практической реализации, потому что он содержит максимальное число операций. При наличии в нем сложных компонентов (тип IIС) технологический процесс дополнительно включает в себя операции индивидуального монтажа этих компонентов с помощью лазерной пайки или группового паяльника (рис. 3.7)

Рис. 3.6. Схема процесса ПМ - конструктивов типа 2

Рис. 3.7. Схема процесса ПМ - конструктивов типа IIС

3.3.1.3 ТИПОВАЯ СХЕМА ПРАКТИЧЕСКОЙ РЕАЛИЗАЦИИ ТЕХНОЛОГИИ ПМ ТИПА 3

Первой операцией технологического процесса (ТП) будет автоматизированная установка компонентов со штыревыми выводами с их подгибкой (рис.3.8). Она выполняется на серийном оборудовании. Далее плата переворачивается и на места установки ПМ - компонентов наносится адгезив. С помощью автоматических укладчиков устанавливаются ПМ – компоненты и осуществляется подсушивание адгезива в конвекционных или инфракрасных печах. После отверждения адгезива плата переворачивается обратно

Рис 3 8. Схема процесса ПМ-конструктивов типа 3

и производится пайка выводов традиционных и ПМ-компонентов волновой пайкой. Дискретные ПМ - компоненты за счет приклеивания во время пайки остаются на своих местах. Последние операции всех технологических процессов – очистка и контроль. Некоторые фирмы осуществляют пайку волной припоя и ПМ - корпуса ИМС (SO). Однако это не рекомендуется ввиду высоких тепловых нагрузок на корпуса, снижения коррозионной стойкости и надежности ИМС.

Каждый из рассмотренных вариантов ПМ обладает своими достоинствами и недостатками.

В качестве достоинств чисто поверхностного монтажа (тип 1) можно отметить:

• наибольшую степень миниатюризации изделия;

• высокую степень автоматизации технологического процесса;

• одноступенчатый процесс пайки;

• высокую надежность изделия;

• возможность обеспечения высокого выхода годной продукции;

• улучшенные выходные электрические характеристики;

• возможность уменьшения объема изделия на 40—75% (по сравнению с ТНТ). К недостатком и проблемам этого варианта монтажа можно отнести:

• недостаточную номенклатуру и объем выпуска компонентов для ПМ;

• большие первоначальные затраты на приобретение нового высокоточного сборочно-монтажного оборудования;

• несовместимость по термическим характеристикам ПП и отдельных типов корпусов ПМК (для LCCC, CBGA и др.);

• более высокую сложность контроля изделия в процессе изготовления; Достоинствами варианта смешанного монтажа (тип 2, IIС) являются:

• больший выбор компонентов при их оптимальной стоимости;

• высокая плотность монтажа (уменьшение объема изделия на 20-60% );

• возможность использования имеющегося оборудования.

В качестве недостатков этого варианта можно отметить:

• многоступенчатость технологического процесса:

• необходимость применения дополнительного оборудования (например, для лазерной пайки);

• не полное использование обратной стороны печатной платы.

Третий вариант монтажа (тип 3, IIIC) также позволяет в определенной степени повысить плотность монтажа и на 10—30% уменьшить объем изделия. Однако по этой характеристике он значительно проигрывает двум первым вариантам и не всегда позволяет обеспечить требуемую степень интеграции. Появляется также дополнительная операция нанесения и отверждения адгезива.

Можно выделить следующие группы технологических процессов и операций, реализующих различные варианты технологии поверхностного монтажа:

• нанесение и сушка адгезива;

• нанесение припойной пасты;

• установка компонентов на печатные платы;

• пайка;

• очистка собранной платы от технологических загрязнений; • контрольные операции; • ремонт.

Перечисленные технологические процессы практически присутствуют (кроме нанесения и сушки адгезива) при всех вариантах реализации технологии ПМ. Для каждой группы в настоящее время разработана большая гамма технологических процессов, целесообразность применения которых определяется вариантом монтируемой платы, устанавливаемых корпусов, назначением изделия, предъявляемыми к нему требованиями, вопросами стоимости. Поэтому для правильного построения техпроцесса и обоснованного выбора оборудования необходимо иметь информацию о всех возможных и доступных для потребителя вариантах.

3.4. ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ДЛЯ НАНЕСЕНИЯ АДГЕЗИВА

3.4.1.ХАРАКТЕРИСТИКА СВОЙСТВ АДГЕЗИВОВ

Назначение адгезива — обеспечить фиксацию компонентов, сориентированных на контактных площадках, в процессе транспортировки и пайки, особенно при пайке волной припоя.

Основные требования, предъявляемые к адгезивам:

• высокая адгезионная способность;

• требуемые диэлектрические свойства;

• минимальное выделение летучих веществ;

• совместимость с конструкционными и технологическими материалами;

• устойчивость к термоциклическим воздействиям;

• способность выдерживать высокие температуры пайки;

• высокая скорость полимеризации без смещения компонентов;

• высокие реологические характеристики, позволяющие наносить его на поверхность ПП любым способом (трафаретная печать, капельный перенос или дозированная подача).

Выбор адгезива практически зависит от конкретного применения с учетом его специфических свойств. Например, однокомпонентные адгезивы более просты в обращении, однако выделяют летучие вещества, двухкомпонентные — требуют точной дозировки составляющих. Поэтому важно иметь конкретные рекомендации для выбора адгезива, удовлетворяющего требованиям монтажа.

Выбор адгезива определяется прежде всего методом нанесения. В настоящее время применяется нанесение адгезива методом трафаретной печати, групповым переносом капель и специальными дозаторами. Наиболее важным свойством адгезива является его способность образовывать каплю необходимых размеров, обеспечивающую заполнение самого большого промежутка между компонентом и платой.

Применяемые адгезивы требуют отверждения. Условия и время отверждения одно- и двухкомпонентных адгезивов различаются. Однокомпонентные адгезивы отверждаются при температуре выше 125 С, двухкомпонентные — при более низкой температуре (80-150 °С в течение 3—5 мин). Кроме термического метода отверждения, применяется сочетание нагрева с облучением ультрафиолетовым (УФ) излучением, что позволяет ускорить этот процесс. Однако такой метод может эффективно применяться только для малогабаритных корпусов, незатеняющих адгезив от прямого попадания УФ лучей. Оптимальное отвеждение адгезива перед нанесением флюса, припоя или перед транспортировкой ПП должно составлять не менее 70%.

Оптимальные режимы отверждения должны обеспечивать минимальную усадку адгезива и отсутствие удаления летучих веществ во время пайки. Следует иметь ввиду, что даже малая усадка может вызвать значительные напряжения и деформации компонента и платы.

В процессе эксплуатации изделия прочность соединения обеспечивается уже припоем. поэтому адгезивы могут удаляться при последующей промывке платы. Однако в ответственных случаях этого необходимо избегать, так как при задержке технологического цикла может потребоваться удаление и повторное нанесение адгезива.

В технологии ПМ адгезивы обычно изготавливаются на основе эпоксидных, акриловых и цианоакриловых смол.

Эпоксидные смолы хорошо известны в электронной технике. Для них характерна хорошая стойкость к растворителям, влагостойкость, возможность полимеризации ультрафиолетовым излучением, хорошее заполнение и ремонтопригодность при местном нагреве. Долговечность хранений в открытой ѐмкости довольно короткая. Некоторые адгезивы изготавливаются на основе двух компонентов, требуют перемешивания, что затрудняет их практическое применение.

В настоящее время нa рынке имеется достаточно широкий выбор адгезивов. В частности, фирмой «Ероху» (Германия) разработана целая гамма адгезивов на основе эпоксидных смол, например:

«Epotek H-70E-4» — полимеризуется в течение 5 мин при температуре 150 °С, выдерживает температуру до 400 °С, обладает высокими реологическими свойствами, что позволяет использовать адгезив при большой толщине без растекания (капля на каплю);

«Nozland UVA-123» — аналогичен по свойствам «Epotek Н-70Е-4», но может полимеризоваться как под воздействием тепла, так и при облучении в ультрафиолетовом спектре.

Акриловые смолы обладают хорошей влагостойкостью и устойчивы к растворителям, имеют малое время полимеризации (3 мин при 120 0С), долговечны, но они не пригодны для трафаретной печати.

Цианоакриловые смолы долговечны при хранении в открытой емкости. Для них характерна быстрая полимеризация и чувствительность к воде. Из-за посредственного заполнения использование цианоакриловых смод трудоемко.

Ряд отечественных предприятий, применяющих технологию поверхностного монтажа, опробовали в качестве адгезивов традиционные клеи ВК-9 и КБ-2 и признали их нетехнологичными из-за трудоемкости приготовления и очень длительной полимеризации. ПО «Интеграл» использует клей БФ-4 для предварительной фиксации ПМ-компонентов перед пайкой оплавлением ИК нагревом.