Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 39 из 102)

а) б) в)

Рисунок 1.15.9. Схемы оптических резонаторов с различными осевыми контурами: линейного (а), кольцевого с плоским контуром (б) и неплоским контуром

(в).

181

а) б) в)

г) д) е)

ж) з) и)

Рисунок 1.15.10.. Схемы оптических резонаторов с различным способом формирования пространственной структуры мод плоского линейного (а) и кольцевого (в); устойчивых сферических – линейного (б) и кольцевого (е); резонаторов с распределѐнной обратной связью (г, д); неустойчивых сферических – линейных (ж, з) и кольцевого (и).

182

Рисунок 1.15.11. Поперечное распределение поля в некоторых поперечных модах (ТЕМ-модах) оптического резонатора: нулевая мода (а), моды высших порядков резонатора с аксиальной (б) и прямоугольной (в) симметрией; 00, 01,

20 и т. д. – значения поперечных индексов m и n.

Рисунок 1.15.12. Спектр собственных колебаний некоторых поперечных мод (ТЕМ-мод) оптического резонатора. I – интенсивность, V – частота, q – продольный индекс; 00, 10, 11, 21 – значения поперечных индексов m и n.

Рисунок 1.15.13. Зоны устойчивости (заштрихованы) некоторых оптических

183 резонаторов: D0 – диаметр перетяжки каустики, L – длина резонатора, R1 и R2 – радиусы кривизны зеркал.

каждый вид колебаний характеризуется тремя целочисленными индексами m, n и q. Первые два из них (m и n), наз. поперечными, определяют число пространственных осцилляций электромагнитного поля в поперечном по отношению к оси оптического резонатора направлении. Третий индекс (q) называется

продольным, определяет число осцилляций поля вдоль оси и равен числу полуволн, укладывающихся в длине резонатора (рис. 3). Частотный интервал между соседними продольными модами (для которых индекс q отличается на один, а индекс m и n одинаковы) постоянен и равен c

2L для линейных оптических резонаторов и c
L – для кольцевых (здесь с – скорость света, L – оптическая длина резонатора). Частотный интервал между соседними поперечными модами (для которых индексы m и n отличается каждый на один, а индекс q один и тот же) для оптических резонаторов разных типов различен и в большинстве случаев сравним с интервалом между соседними продольными модами либо меньше его (рис. 4). Поверхность, внутри которой сосредоточена основная энергия моды, называется каустикой. Поперечные размеры каустики определяются кривизной зеркал, расстоянием между ними, а также поперечными индексами моды (рис. 5). Место, где каустика имеет наименьший поперечный размер, называется перетяжкой. Так как размеры оптического резонатора значительно превосходят длину волны света, то добротность оптического резонатора оказывается высокой (~107).
Оптические запоминающие среды

Оптические запоминающие среды (ОЗС), светочувствительные материалы, которые используются для регистрации (записи), хранения и тиражирования информации в оптических запоминающих устройствах. Основные требования, предъявляемые к ОЗС высокая чувствительность (~10-4 Дж/см2); высокая разрешающая способность (до 10000 мм-1 ); высокая контрастность (свыше 1:100); высокая помехозащищѐнность (менее 10 ошибок на 1 бит); большая продолжительность хранения информации (свыше 10 лет), а для реверсивных (т. е. допускающих многократнyю пepeзапись информации ОЗС) также малая длительность цикла перезаписи (менее 50 нс) и возможность выполнения достаточно большого их числа. В соответствии с физ. и хим. способами записи информации выделяют несколько . основных классов ОЗС. (см. Таблицу 1):


184

Класс оптических

запоминающих

сред

Механизм записи информации

Чувствительность,

Дж/см2

Разрешающая

способность, мм-1

Возможность перезаписи

Время цикла запись–стирание

Время хранения

Фотографические материалы

Восстановление палоидов серебра до металла

10-4–10-5

До 4000

Не имеется

Неограничеснное

Фоторезисты

Фотоплимеризация или фотодеструкция

10-2–10-3

До 5000

Имеется

До 50 лет

Фотохромные материалы

Фотоионизация дефектов

10-1–10-2

До 1000

Имеется

10-5

От 10-5 с до нескольких месяцев

Фототермопластики

Деформация поверхности под действием электростатических сил и поверхностного натяжения

10-4

400–1200

То же

10-2

До 10 лет

Магнитооптические материалы

Переориентация магнитных доменов в магнитном поле при нагревании с помощью лазера

10-1–10-2

До 1000

То же

10-5

До 1 года

Термооптические материалы

Испарение, плавление или образование пузырьков при

импульсном нагревании

тонких металлических плѐнок с

помощью лазера

10-1–10-2

1500

Не имеется

До 10 лет

Халькогенидные стѐкла

Фотоструктурные изменения

10-2–10-3

До 10 000

Имеется

Несколько секунд

184


185

1.16. ВОЛОКОННО-ОПТИЧЕСКИЕ ЛИНИИ СВЯЗИ. ВОЛОКОННО-

ОПТИЧЕСКИЕ ДАТЧИКИ

Оптическая связь, передача информации посредством света.. Весьма малая (по сравнению с радиоволной) длина волны лазерного излучения, большая ширина полосы частот (в 10 раз превышающая полосу частот всего радиодиапазона) и высокая направленность излучения (в пределах 10-5-10-6 рад) обеспечивают лазерной оптической связи большие преимущества перед др. видами связи по числу каналов, помехозащищѐнности, дальности и скорости передачи. По структуре лазерная линия связи аналогична линии радиосвязи (рис. 1.16.1).

Рисунок 1.16.1. Схема линии лазерной связи: I — передатчик; II — приѐмник; 1 — лазер; 2 — модулятор света; 3 — передающая оптическая антенна; 4 — приѐмная оптическая антенна; 5 — фотодетектор; 6 — усилитель; 7 — дискриминатор; 8 — информация.

Для модуляции лазерного излучения либо воздействуют на сам процесс генерации излучения, либо используют модулятор света. На выходе передатчика формируется узкий малорасходящийся луч света; попадая на вход приѐмника, он направляется на фотодетектор, который преобразует оптическое излучение в электрический сигнал (менее часто встречаются лазерные линии связи с гетеродинным приѐмом). Электрические сигналы усиливаются и обрабатываются обычными радиотехническими методами.

Лазерные линии связи подразделяются на космические, атмосферные, использующие прохождение излучения в при земных слоях атмосферы, и наземные, использующие закрытые световодные каналы или волоконнооптические линии связи (ВОЛС). Перспективны лазерные линии связи (гл. обр. ретрансляционные), действующие в ближнем космическом пространстве с использованием искусственных спутников Земли на геостационарных орбитах (около 40 000 км над поверхностью Земли), через которые можно обмениваться информацией между любыми точками Земли. Атмосферные линии связи из-за сильного поглощения и рассеяния света в атмосфере используются ограниченно, в основном для оперативной связи на сравнительно близких расстояниях. Наиболее широко распространены ВОЛС. т. к. они лишены существ, недостатков космических и атмосферных линий связи. По сравнению с проводными или кабельными линиями связи ВОЛС при существенно меньших массе и размерах обеспечивают значительно большие скорости передачи информации.

Волоконно-оптическая линия связи (ВОЛС), линия оптической связи, в которой передача информации осуществляется с помощью волоконнооптических элементов. ВОЛС состоит из приѐмного и передающего оптических модулей, волоконно-оптических кабелей и волоконно-оптических соединителей.

Основные характеристики ВОЛС: пропускная способность – максимальная скорость передачи информации, определяется характеристиками источника оптического излучения, фотоприѐмника, электронных схем приѐмного и передающего оптич. Модулей, а также дисперсионными характеристиками используемого волокна; максимальная длинна определяется мощностью источника оптического излучения, эффективностью ввода оптического излучения в волокно, чувствительностью фотоприѐмника, затуханием оптического сигнала в волокне, количеством волоконно-оптических соединителей и, соответственно, вносимыми ими потерями; способ организации информационного обмена (дуплексный или симплексный).