Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 32 из 102)

147

линейным схемам с оптоэлектронным управлением. При мощности

управляющего сигнала 60—80 мВт параметры прерывателя достигают значений,

необходимых для стандартных полупроводниковых микросхем. Оптоэлектронные маломощные реле постоянного тока (рис. 1.13.10, в) предназначены для замены аналоговых

электромеханических реле с быстродействием в миллисекундном диапазоне и гарантируемым числом срабатываний 104—107.

Рисунок 1.13.11.

Представляют интерес оптоэлектронные

Электрическая схема

микросхемы серии 249, в которую входят четыре

оптоэлектронных микросхем группы приборов, представляющих собой серии 249 электронные ключи на основе

электролюминесцентных диодов и транзисторов. Электрическая схема всех групп приборов одинакова (рис. 1.13.12). Конструктивно микросхемы оформлены в прямоугольном плоском корпусе интегральных микросхем с 14 выводами и имеют два изолированных канала, что уменьшает габариты и массу аппаратуры, а также расширяет функциональные возможности микросхем. Светодиоды выполнены на основе кремния и имеют п+-p-ni-n+-структуру. Наличие двух каналов в ключе позволяет использовать его в качестве интегрального прерывателя аналоговых сигналов и получать высокий коэффициент передачи сигнала (10—100) при включении фототранзисторов по схеме составного транзистора.

Оптоэлектронные приборы

Работа оптоэлектронных приборов основана на электронно-фотонных процессах получения, передачи и хранения информации.

Простейшим оптоэлектронным прибором является оптоэлектронная пара, или оптрон. Принцип действия оптрона, состоящего из источника излучения, иммерсионной среды (световода) и фотоприемника, основан на преобразовании электрического сигнала в оптический, а затем снова в электрический.

Оптроны как функциональные приборы обладают следующими преимуществами перед обычными радиоэлементами:

полной гальванической развязкой «вход – выход» (сопротивление

148

изоляции превышает 1012 – 1014 Ом); абсолютной помехозащищенностью в канале передачи информации (носителями информации являются электрически нейтральные частицы – фотоны); однонаправленностью потока информации, которая связана с

особенностями распространения света; широкополосностью из-за высокой частоты оптических колебаний, достаточным быстродействием (единицы наносекунд); высоким пробивным напряжением (десятки киловольт); малым уровнем шумов; хорошей механической прочностью.

По выполняемым функциям оптрон можно сравнивать с трансформатором (элементом связи) при реле (ключом).

В оптронных приборах применяют полупроводниковые источники излучения – светоизлучающие диоды, изготовляемые из материалов соединений группы АIII BV, среди которых наиболее перспективны фосфид и арсенид галлия. Спектр их излучения лежит в области видимого и ближнего инфракрасного излучения (0,5 – 0,98 мкм). Светоизлучающие диоды на основе фосфида галлия имеют красный и зеленый цвет свечения. Перспективны светодиоды из карбида кремния, обладающие желтым цветом свечения и работающие при повышенных температурах, влажности и в агрессивных средах.

Светодиоды, излучающие свет в видимом диапазоне спектра, используют в электронных часах и микрокалькуляторах.

Светоизлучающие диоды характеризуются спектральным составом излучения, который достаточно широк, диаграммой направленности; квантовой эффективностью, определяемой отношением числа испускаемых квантов света к количеству прошедших через p-n-переход электронов; мощностью (при невидимом излучении) и яркостью (при видимом излучении); вольт-амперными, люмен-амперными и ватт-амперными характеристиками; быстродействием (нарастанием и спадом электролюминесценции при импульсном возбуждении), рабочим диапазоном температур. При повышении рабочей температуры яркость светодиода падает и снижается мощность излучения.

Основные характеристики светоизлучающих диодов видимого диапазона приведены в табл. 1.13.1, а инфракрасного диапазона – в табл. 1.13.2.

Таблица 1.13.1 Основные характеристики светоизлучающих диодов видимого диапазона

Тип диода

Яркость, кд/м2, или сила света, мккд

Постоянное прямое напряжение

, В

Цвет свечения

Постоянный прямой ток, мА

Масса, г

КЛ101 А – В

АЛ102 А – Г

АЛ307 А – Г

10 – 20 кд/м2

40 – 250 мккд 150 – 1500 мккд

5,5

2,8

2,0 – 2,8

Желтый

Красный, зеленый

Красный, зеленый

10 – 40 5 – 20

10 – 20

0,03

0,25

0,25

149

Таблица 1.13.2 Основные характеристики светоизлучающих диодов инфракрасного диапазона

Тип диода

Полная мощность излучения, мВт

Постоян ное

прямое напряже ние, В

Длина волны

излучения, мкм

Время нарастани

я импульса излучения

, нс

Время спада импульс

а

излучен ия, нс

Масса

, г

АЛ103 А, Б АЛ106 А – Д АЛ107 А, Б АЛ108 А

АЛ109 А

АЛ115 А

0,6 – 1 (при токе 50 мА) 0,2 – 1,5 (при токе 100 мА)

6 – 10 (при токе 100 мА)

1,5 (при токе 100 мА)

0,2 (при токе 20 мА)

10 (при токе 50 м А)

1,6

1,7 – 1,9

2

1,35

1,2

2,0

0,95 0,92 – 0,935

0,95

0,94

0,94

0,9 – 1

200 – 300

10

– 400

– 300

500

20

1000

– 500

0,1

0,5

0,2

0,15

0,006

0,2

Светоизлучающие диоды в оптоэлектронных приборах соединяются с фотоприемниками иммерсионной средой, основным требованием к которой является передача сигнала с минимальными потерями и искажениями. В оптоэлектронных приборах используют твердые иммерсионные среды – полимерные органические соединения (оптические клеи и лаки), халькогенидные среды и волоконные световоды. В зависимости от длины оптического канала между излучателем и фотоприемником оптоэлектронные приборы можно подразделить на оптопары (длина канала 100 – 300 мкм), оптоизоляторы (до 1 м) и волоконно-оптические линии связи – ВОЛС (до десятков километров).

К фотоприемникам, используемым в оптронных приборах, предъявляют требования по согласованию спектральных характеристик с излучателем, минимуму потерь при преобразовании светового сигнала в электрический, фоточувствительности, быстродействию, размерам фоточувствительной площадки, надежности и уровню шумов.

Для оптронов наиболее перспективны фотоприемники с внутренним фотоэффектом, когда взаимодействие фотонов с электронами внутри материалов с определенными физическими свойствами приводит к переходам электронов в объеме кристаллической решетки этих материалов.

Внутренний фотоэффект проявляется двояко: в изменении сопротивления фотоприемника под действием света (фоторезисторы) либо в появлении фото-эдс на границе раздела двух материалов – полупроводник-полупроводник, металлполупроводник (вентильные фотоэлементы, фотодиоды, фототранзисторы).

Фотоприемники с внутренним фотоэффектом подразделяют на фотодиоды (с p-n-переходом, МДП-структурой, барьером Шоттки), фоторезисторы, фотоприемники с внутренним усилением (фототранзисторы, составные фототранзисторы, фототиристоры, полевые фототранзисторы).

Фотодиоды выполняют на основе кремния и германия. Максимальная спектральная чувствительность кремния 0,8 мкм, а германия – до 1,8 мкм. Они работают при обратном смещении на p-n-переходе, что позволяет повысить их

150

быстродействие, стабильность и линейность характеристик.

Наиболее часто в качестве фотоприемников оптоэлектронных приборов различной сложности применяют фотодиоды p-i-n-структуры, где i – обедненная область высокого электрического поля. Меняя толщину этой области, можно получить хорошие характеристики по быстродействию и чувствительности за счет малой емкости и времени пролета носителей.

Повышенными чувствительностью и быстродействием обладают лавинные фотодиоды, использующие усиление фототока при умножении носителей заряда. Однако у этих фотодиодов недостаточно стабильны параметры в диапазоне температур и требуются источники питания высокого напряжения. Перспективны для использования в определенных диапазонах длин волн фотодиоды с барьером Шоттки и с МДП-структурой.

Фоторезисторы изготовляют в основном из поликристаллических полупроводниковых пленок на основе соединения (кадмия с серой и селеном). Максимальная спектральная чувствительность фоторезисторов 0,5 – 0,7 мкм. Фоторезисторы, как правило, применяют при малой освещенности; по чувствительности они сравнимы с фотоэлектронными умножителями – приборами с внешним фотоэффектом, но требуют низковольтного питания. Недостатками фоторезисторов являются низкое быстродействие и высокий уровень шумов.