а так как количество промежуточных измерений n=T/
t, то из (9) получим: 
При больших n выражение (10) упрощается и, переходя к непрерывному времени, преобразуется в интегральную форму вычисления дисперсии оценки среднего значения мгновенной частоты:

Вычислим дисперсию оценки среднего значения мгновенной частоты на примере некоторых моделей фазовых флуктуаций, например с экспоненциальной корреляционной функцией, нормированный вариант которой будет иметь вид:

где
– время корреляции фазовых флуктуаций.Выполнив вычисления в соответствии с (11), в результате получим:

где
, а
– эффективная ширина спектра фазовых флуктуаций.При больших временах усреднения, соответствующих T >>
, формулы для вычисления дисперсии (11) и (13) преобразуются к упрощенному выражению для вычисления дисперсии оценки среднего значения мгновенной частоты: 
которая по сравнению с оценкой классического измерителя, равной
дает выигрыш в точности, равный: 
который можно достигнуть, оптимизировав обработку исследуемого сигнала.
Полученные выражения для вычисления дисперсии оценки среднего значения мгновенной частоты, могут быть использованы для определения оптимального количества выборок на интервале усреднения и шага квантования по времени. Оптимальный шаг квантования определим, составив и исследовав отношение дисперсий (10) и (14), равное:

где
дискретный аналог корреляционной функции (12), или для сравнения – модель фазовых флуктуаций с равномерным энергетическим спектром и 
Другим выражением, представляющим интерес для исследований, является отношение дисперсии оценки среднего значения мгновенной частоты цифрового измерителя с весовой обработкой и дисперсии оценки среднего значения мгновенной частоты классического измерителя, равное:

Список используемой литературы
1. Электрические измерения / Байда Л. И., Добротворский Н. С., Душин Е. М. и др.: Под ред. А. В. Фремке и Е. М. Душина.—Л.: Энергия, 1980.—392с.
2. Кушнир Ф. В. Электрорадиоизмерения: Учебное пособие для вузов,— Л.: Энергоатомиэдат, 1983.—320 с.
3. Кончаловский В.Ю., Семенов В.Ф., Солодов Ю.С. Измерение частоты и интервалов времени. - М.: Изд-во МЭИ, 1999. -12 с.
4. Тихонов В.И. Оптимальный прием сигналов. М.: Радио и связь, 1983, 320 с.
5. Гутников В.С. Фильтрация измерительных сигналов. Л.: Энергоатомиздат, 1990, 192 с.