Смекни!
smekni.com

Технология радиоэлектронных устройств и автоматизация производства (стр. 3 из 5)

уIII (х), yIV (х) — производные 3-го и 4-го порядка.

Обобщенный закон распределения типа А наряду со средним значением М(х), среднеквадратичным отклонением

характеризуется мерой крутости
и мерой косости
:

(2.18)

(2.19)

Для обобщенного закона типа А:

(2.20)

где t — безразмерная дробь, которая определяется по таблицам математической статистики в зависимости от значения и знака эксцесса

.

Обобщенный закон типа А наиболее часто встречается в производстве гибридных пленочных ИМС. Так, погрешности параметров тонкопленочных резисторов и конденсаторов, измеренные за сравнительно большой период их производства, подчиняются этому закону. Примером может служить также смешивание изделий из разных партий, изменение настройки оборудования в технологическом процессе. [1, стр.47]

3. Герметизация изделий. Схемы ТП герметизации и контроль качества герметизации

Электронная аппаратура эксплуатируется в различных климатических условиях и на надежность ее работы влияют температура окружающей среды, влага, пыль, биологическая среда, радиация и другие факторы. Под действием температуры происходит изменение физических параметров материалов деталей, их старение и ухудшение эксплуатационных свойств. Биологическая среда содержит микроорганизмы, в частности плесневые грибки и бактерии, выделяющие в продуктах обмена различные кислоты, которые вызывают разложение органических материалов. Пыль из окружающей атмосферы, оседая на поверхности материалов, адсорбирует влагу, увеличивает поверхностную электропроводность материалов, ускоряет коррозию металлических покрытий, способствует образованию плесени. [1, стр.315]. Поэтому для защиты РЭА от внешних климатических воздействий применяют герметизацию.

Гермитизация − это совокупность работ по обеспечению работоспособности электронной аппаратуры в процессе ее производства, хранения и последующей эксплуатации. Герметизация может быть поверхностной (пассивация, оксидирование, герметизация стеклянными покрытиями, пропитка, обволакивание, гидрофобизация, герметизация лакокрасочными покрытиями) и объемной (заливка компаундами, герметизация вакуумно-плотными корпусами, герметизация литьевым прессованием ). [1, стр.316].

Основными способами покровной герметизации являются пропитка, обволакивание, гидрофобизация.

Пропитка заключается в заполнении пор, трещин, пустот в изоляционных материалах, а также промежутков между конструктивными элементами узлов электроизоляционными негигроскопичными материалами. Пропитке подвергаются многие детали и сборочные единицы ЭА, изготовленные из волокнистых электроизоляционных материалов, являющихся пористыми и гигроскопичными. К ним относятся намоточные изделия, каркасы катушек и др. Одновременно с повышением влагозащиты при пропитке достигается повышение механической прочности, нагревостойкости, теплопроводности и химической стойкости.

Обволакиванием называется процесс создания покровной оболочки на поверхности изделий, предназначенных для кратковременной работы в условиях влажной среды (не более 100 ч). Появление микроскопических каналов и зазоров вследствие разницы в температурных коэффициентах расширения и усадки обволакивающего материала и изделия неизбежно приводит к проникновению влаги внутрь изделия и потере герметичности.

Для обволакивания используются материалы, удовлетворяющие следующим требованиям: высокая адгезия к материалам покрываемого изделия, достаточная механическая прочность, малая влагопроницаемость, высокие электроизоляционные свойства.

Разновидностью обволакивания является гидрофобизация изделий.

Гидрофобизация — повышение влагостойкости материалов, деталей и изделий путем нанесения на их поверхность защитной пленки. Для получения высокой водоотталкивающей способности пленок используют кремнийорганические высокомолекулярные соединения.

Схема технологического процесса пропитки изделий представлена на рисунке 3.1.


Рисунок 3.1 Техпроцесс пропитки изделий.

Наибольшее распространение среди методов объемной герметизации получила заливка.Заливкой называется процесс заполнения лаками, смолами или компаундами свободного пространства между деталями, изделиями и стенками кожухов. Кожух предотвращает растекание неотвердевшего или размягченного заливочного материала. Иногда кожухи заменяют специальными оболочками, выполненными из прессованной бумаги, пленочных материалов, которые не извлекают из залитого изделия.

Достоинством заливки является то, что кроме защиты от климатических воздействий в большей степени, чем при пропитке, повышается механическая стойкость изделий и стойкость к вибрационным нагрузкам. Недостатки: ухудшение теплоотвода, снижение добротности, увеличение паразитных емкостей, длительность процесса полимеризации компаунда (5—10 ч). При значительном объеме заливаемого пространства в результате циклических колебаний температуры возникают напряжения в материале, вызывающие микротрещины.Технологический процесс заливки состоит из следующих операций:

Рисунок 3.2 Техпроцесс заливки изделий.

Микроминиатюризация и связанная с ней высокая плотность монтажа в микромодульных конструкциях ЭА предъявляют особые требования к герметизирующим материалам, которые должны обеспечить надежную изоляцию между элементами в аппаратуре с высокой плотностью монтажа, сохранение функциональной точности выходных параметров узла, механическую прочность и защиту сложных и чувствительных элементов. Стоимость герметичных кожухов и корпусов довольно высока, поэтому полную герметизацию проводят в случаях, специально оговоренных в технических условиях на РЭА. Наиболее эффективным способом защиты ЭА от климатических воздействий и повышения ее надежности является герметизация, которая заключается в размещении изделий внутри вакуумно-плотных корпусов и оболочек из металла, стекла и керамики. [1, стр.323]. Схема техпроцесса герметизации изделий ЭА представлена на рисунке 3.3.

Рисунок 3.3 Схема техпроцесса герметизации в вакуумно-плотные корпуса.

Для контроля качества герметичности корпусов применяется целый ряд методов: вакуумный, вакуумно-жидкостный, люминесцентный, радиоактивный. Выбор метода контроля герметичности определяется уровнем требований к степени герметичности испытуемых объектов, направлением и величиной газовой нагрузки на оболочку и другими условиями.

Масс-спектрометрический метод основан на разделении сложной смеси газов или паров по массам с помощью электрических и магнитных полей и имеет наиболее высокую чувствительность. Изделия наполняются гелием двумя способами: герметизацией корпусов приборов и микросхем в атмосфере гелия; опрессовкой загерметизированных приборов и микросхем в атмосфере гелия. Опрессовывают те ИМС, корпуса которых не подвергались окраске или лакировке, так как после этих операций микроотверстия в корпусах могут быть закрыты для доступа гелия краской либо лаками. Негерметичные ИМС, не отбракованные на этапе ТП, при эксплуатации могут выйти из строя.

Для опрессовки ИМС загружают в камеру, которую герметично закрывают, затем откачивают из камеры воздух до давления 7—14 Па. После откачки камеру заполняют гелием и выдерживают в ней ИМС при давлении (3—5)×10-5 Па. Время выдержки ИМС в камере устанавливают в зависимости от типов корпусов (внутреннего объема), обычно от 3—48 ч до 3 сут. За этот период в корпуса ИМС, имеющие течи, попадает гелий, который остается в них некоторое время. После завершения цикла опрессовки давление в камере понижают до нормального и ИМС переносят в измерительную камеру для контроля герметичности.

Для случая молекулярного истечения газа размер течи определяется по формуле:

, (3.1)

где

— чувствительность схемы измерения;

U — показания милливольтметра масс-спектрометра, мВ (фиксируется превышение отсчета прибора над фоном, который определяется заранее для каждого измерения);

М, Мв — молекулярная относительная масса наполняющего прибор гелия и воздуха (соответственно 4 и 29);

— концентрация газа в приборе;

PАTM — атмосферное давление;

P1 — давление в откачиваемой камере (может быть принято равным нулю);

P2 — давление газа в приборе.

Для гелия формула (3.1) трансформируется к виду

, (3.2)

Скорость утечки гелия измеряют не позднее чем через 1,5 ч после извлечения из опрессовочной камеры с помощью гелиевого течеискателя. Герметичными считаются корпуса ИМС, имеющие течь менее

5×10-10 м3×Па/с. Масс-спектрометрическим методом могут быть не отбракованы ИМС с большими течами, если введенный гелий выйдет раньше, чем они будут подвергнуты контролю, т. е. в корпусах не окажется пробного газа. [1, стр.327]