Смекни!
smekni.com

Исследование системы передачи дискретных сообщений (стр. 3 из 5)

,

.

Найдем среднее число кодированных бит, приходящееся на один символ источника.

Найдем среднюю битовую скорость на выходе кодера канала.

.

3. Определим исправляющую и обнаруживающую способность кода.

Для начала определим исправляющую способность кода.

Где

- расстояние между разрядами кодовой комбинации.
.

Определим обнаруживающую способность кода.

,

.

4. а)В режиме исправления ошибки декодер сначала вычисляет синдром,затем по таблице синдромов обнаруживает ошибочный бит, затем инвентирует его.

б)В режиме обнаружения ошибки,декодер вычисляет синдром, если в синдроме нет единиц, то кодовая комбинация является разрешенной и декодер пропускает кодовую комбинацию, а если есть хотя бы одна единица, то комбинация является запрещенной.

5. Найдем вероятность ошибки на блок, полагая, что декодер работает в режиме исправления ошибок.

,

Найдем вероятность ошибки на бит на выходе декодера.

Вывод: Выполнив расчеты, можно заметить следующее: вероятность того что декодер исправит ошибку в каждом блоке очень большая, это означает большую вероятность того, что переданное сообщение придет без искажений.

Найдем вероятность ошибки на блок, полагая, что декодер работает в режиме обнаружения ошибок.

Найдем вероятность ошибки на бит на выходе декодера.

Рассчитаем среднее число перезапросов на блок.

Отсюда вероятность перезапроса:

Вывод: Вероятность того, что декодер обнаружит все ошибки, довольно велика, значит, он сможет их исправить, и мы получим неискаженное сообщение.

Задание № 4.

Исследование тракта модулятор-демодулятор.

1. Определим скорость относительной фазовой модуляции:

.

Найдем тактовый интервал передачи одного бита.

,

.

Рассчитаем минимально необходимую полосу пропускания канала.

.

Найдем частоту несущего колебания.

,

.

Запишем аналитическое выражение ОФМ-сигнала в общем виде.

- случайная начальная фаза, неизвестная при приеме, зависящая, в частности, от символа, передававшегося (n-2)-м элементом.

2. Запишем аналитическое выражение, связывающее сигналы на входе и выходе.

Учитывая, что у нас гауссовский канал с неопределенной фазой, получаем выражения:

, где

-сигнал на выходе,

- сигнал на входе,

-шум.

и
сигнал соответствующий приему 1 и 0 .

.

.

Тогда:

.

Найдем амплитуду

.

Выразим амплитуду несущего колебания из выражения для вычисления мощности единичного сигнала на передаче.

,

.

Теперь найдем

.

Так как по условию у нас некогерентный прием, то

Найдем энергию единичного сигнала из формулы.

,

.

Найдем мощность единичного элемента сигнала на приеме.

,

,

.

Отсюда:

,

Запишем выражение связывающее сигналы на входе и выходе.

.

3. Запишем решающее правило и алгоритм работы демодулятора по критерию минимума средней вероятности ошибки с учетом некогерентного приема.

Оптимальный алгоритм для ОФМ:

, i=0, 1.

Приходящий сигнал s(t) на двух тактовых интервалах при ОФМ можно представить в зависимости от символа, передаваемого n-м элементом, так:

Для схемной реализации данный алгоритм можно упростить. Для этого подставим систему сигналов на входе алгоритм и после сокращения одинаковых слагаемых приведем алгоритм приема к виду:

,

где

На рисунке показана схема реализации некогерентного приема ОФМ с согласованным фильтром и линией задержки. Приходящий сигнал поступает на фильтр СФ, согласованный с элементом сигнала

длительностью Т. Отклик фильтра поступает на два входа перемножителя, на один из них непосредственно, а на другой – через линию задержки (ЛЗ), обеспечивающую задержку на время Т. Таким образом, вблизи момента отсчета на перемножитель поступают напряжения, соответствующие двум соседним элементам сигнала – только что закончившемуся и предыдущему, прошедшему через линию задержки. Можно показать, что первое из этих напряжений выражается формулой
, а второе
. После их перемножения и фильтрации результата в ФНЧ получаем напряжение
, которое в РУ сравнивается с нулевым порогом. Описанную схему называют схемой сравнения фаз.