Смекни!
smekni.com

Проектирование системы измерения электрических параметров каналов звуковой частоты (стр. 1 из 22)

Реферат

Пояснительная записка ___ страниц., 23 рисунков, 37 таблиц, 23 источника, приложение ___ листов.

Ключевые слова: ЦИФРОВЫЕ ГЕНЕРАТОРЫ ЗВУКОВЫХ ЧАСТОТ, ЦИФРО-АНАЛОГОВОЕ ПРЕОБРАЗОВАНИЕ, АНАЛОГО-ЦИФРОВОЕ ПРЕОБРАЗОВАНИЕ, ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ, ЦИФРОВОЙ ПРОЦЕССОР ОБРАБОТКИ СИГНАЛОВ, ИНТЕРФЕЙС RS232.

Целью данной работы является проектирование системы измерения электрических параметров каналов звуковой частоты. Система позволяет осуществлять: генерацию одно- или многочастотного сигнала в диапазоне частот 20Гц – 20кГц с шагом изменения частоты 1Гц и амплитудой до 2В, измерение уровня сигнала частотой 1020Гц в диапазоне уровней от –30дБ до +16дБ с погрешностью 0,1дБ (уровень отсчитывается относительно 0,775В), измерение частоты монотонального сигнала в диапазоне от 20Гц до 20кГц с погрешностью 1Гц.


СОДЕРЖАНИЕ

Перечень сокращений

Введение

1 РАСЧЕТНО-ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

1.1 Принципы построения цифровых генераторов звуковых частот

1.2 Разработка структурной схемы измерителя

1.3 Разработка электрической принципиальной схемы процессорного блока

1.3.1 Разработка состава схемы процессорного блока

1.3.2 Выбор микропроцессора

1.3.3 Выбор ПЗУ и ОЗУ

1.3.4 Выбор дешифратора, счетчика и инвертора

1.3.5 Выбор генератора тактовой частоты

1.3.6 Выбор микросхемы сброса

1.3.7 Выбор микросхемы УСАПП

1.3.8 Выбор преобразователя уровней

1.3.9 Описание электрической принципиальной схемы процессорного блока

1.4 Разработка электрической принципиальной схемы блока формирования и управления

1.4.1 Разработка состава блока формирования и управления

1.4.2 Выбор ЦАП

1.4.3 Выбор АЦП

1.4.4 Выбор аттенюирующего ЦАП

1.4.5 Выбор регистра

1.4.6 Выбор операционного усилителя

1.4.7 Выбор реле

1.4.8 Расчет параметров элементов ФНЧ, предназначенного для сглаживания внеполосного шума ЦАП

1.4.9 Описание электрической принципиальной схемы блока формирования и управления

1.5 Разработка алгоритма работы измерителя

1.6 Расчет мощности потребляемой устройством

1.7 Расчет надежности измерителя

2 КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

2.1 Патентный поиск

2.2 Разработка технического задания

2.3 Разработка конструкции блока

2.4 Выбор и обоснование технологии печатной платы, класса точности, габаритных размеров, материала, толщины и шага координатной сетки

2.5 Размещение и трассировка печатной платы

2.6 Расчет проводящего рисунка

2.7 Расчет проводников по постоянному току

2.8 Расчет проводников по переменному току

2.9 Расчет теплового режима

2.10 Расчет защиты от механических воздействий

2.11 Расчет на действие удара

2.12 Оценка уровня качества

2.12.1 Оценка уровня технологичности конструкции блока

2.12.2 Расчет уровня качества

2.13 Разработка технологического процесса сборки блока

3 ТЕХНИКО-ЭКОНОМИЧЕСКИЙ РАЗДЕЛ

3.1 Выбор и обоснование базового варианта

3.2 Расчет себестоимости блока измерителя

3.3 Расчет годовых эксплуатационных затрат

3.4 Расчет годового экономического эффекта

4 РАЗДЕЛ ОХРАНЫ ТРУДА И ОКРУЖАЮЩЕЙ СРЕДЫ

4.1 Анализ и нормирование опасных и вредных производственных факторов

4.2 Разработка рекомендаций, мероприятий, устройств и систем безопасности жизнедеятельности

4.2.1 Мероприятия по обеспечению безопасности и безвредности объекта проектирования

4.2.2 Организация рабочего места

4.2.3 Расчет защитного заземления

4.3 Обеспечение экологической безопасности

4.3.1 Защита атмосферы

4.3.2 Защита гидросферы

4.4 Пожарная безопасность

4.4.1 Пожароопасность на предприятии

4.4.2 Мероприятия при пожарной профилактике, средства защиты и тушения пожаров

4.4.3 Выбор первичных средств пожаротушения

4.4.4 Расчет противопожарного водоснабжения

4.5 Мероприятия по обеспечению продолжения производства в чрезвычайных ситуациях

5 Заключение

Список литературы

Приложение


Перечень сокращений

ЦПОС – цифровой процессор обработки сигналов

АЦП – аналого-цифровой преобразователь

ЦАП – цифро-аналоговый преобразователь

ФНЧ – фильтр низких частот

ИНИ – измеритель нелинейных искажений

ИМС – интегральная микросхема

ПЭВМ – персональная электронно-вычислительная машина

ПЗУ – постоянное запоминающее устройство

ОЗУ – оперативное запоминающее устройство

ТТЛ – транзисторно-транзисторная логика

УСАПП – универсальный синхронно-асинхронный приемопередатчик

ЭВМ – электронно-вычислительная машина

КМОП – комплиментарный металл окисел полупроводник

ЦОС – цифровая обработка сигналов

БПФ – быстрое преобразование Фурье

OSI – Open System Interconnect (эталонная модель взаимосвязи открытых систем)

ТТЛШ – транзисторно-транзисторная логика с диодами Шоттки

ЗУ – запоминающее устройство


ВВЕДЕНИЕ

К началу двадцать первого века во всем мире построено и эксплуатируется огромное количество проводных линий связи, обеспечивающих передачу сигналов звуковой частоты. Особенно много линий связи используется в развитых странах (в США и Западной Европе), так как там в последнее время очень бурно развиваются информационные технологии, которые позволяют повысить удобство, обеспечить автоматизацию различных сфер деятельности современного человека. В настоящее время для высокоскоростной связи применяются оптоволоконные кабели, но для их введения в эксплуатацию требуются большие финансовые вложения. В тоже время исторически первыми линиями связи были проводные линии связи звуковой частоты, и к настоящему моменту их проложено и эксплуатируется достаточно много. Целесообразно полностью использовать их возможности.

Для качественной и надежной передачи по таким линиям связи сигналов звуковой частоты необходимо знать и периодически проверять параметры данных каналов связи. Каналы связи, не обладающие параметрами, заданными в ГОСТ 11515-91, ГОСТ 21655-87, приказом МС РФ №43 от 15.04.96 г. и Рекомендациями МСЭ-Т J.21, J.23, G.712, G713. , не обеспечивают требуемого качества передачи сигналов и не допускаются к эксплуатации. Проверки каналов связи на соответствие заданным параметрам проводятся периодически, поскольку с течением времени линии связи стареют, меняют свои параметры и в итоге выходят из строя. Поскольку номенклатура измеряемых показателей, при проверке качества линий связи, довольно велика, в данном дипломном проекте разрабатывается устройство, позволяющее измерять среднеквадратический уровень сигнала с частотой 1020 Гц, коэффициент гармоник и частоту тонального сигнала звуковой частоты, поданного на вход анализатора. До настоящего времени для измерения практически каждой характеристики канала связи приходилось пользоваться отдельным прибором. В ГОСТе указывался порядок проведения измерений и название прибора, выпускаемого советской промышленностью и предназначенного для выполнения данного вида измерений. Другими словами, что бы измерить коэффициент гармоник нужен был ИНИ( Измеритель нелинейных искажений), для измерения частоты сигнала применялись частотомеры, уровень сигнала измерялся вольтметром. Необходимость использования большого количества тяжелых и громоздких приборов, отсутствие автоматизации проведения измерений создает значительные неудобства оператору.

Элементная база, производимая в Америке и Европе, за последнее время значительно улучшила свои характеристики и одновременно стала достаточно дешевой и доступной даже для россиян. Значительные успехи западных компаний по производству быстродействующих и многоразрядных аналого-цифровых и цифро-аналоговых преобразователей с хорошими характеристиками, производство быстродействующих цифровых сигнальных процессоров, предназначенных для работы в реальном масштабе времени, позволили создавать малогабаритные, экономичные и достаточно дешевые устройства различного назначения. Поэтому появилась возможность совместить в одном небольшом корпусе все приборы, необходимые для тестирования проводных каналов связи. Дипломный проект посвящается разработке именно такого устройства.


1 РАСЧЕТНО-ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

1.1 Принципы построения цифровых генераторов звуковых частот

В современной радиоэлектронной промышленности очень часто используются различного рода генераторы. Раньше, до широкого распространения и удешевления цифровой элементной базы, использовались в основном аналоговые устройства. Задачей генератора является преобразование энергии источника питания в энергию электрических колебаний необходимой формы и частоты. Для построения генераторов используются усилители с положительной обратной связью. Для превращения усилителя в генератор необходимо выполнение условий баланса фаз и баланса амплитуд, иными словами необходимо чтобы обратная связь была положительной, а усиление достаточным для компенсации потерь в цепи обратной связи. Стабильность генератора – это его способность генерировать заданную частоту без дрейфа. Дрейф генератора определяется стабильностью его компонентов. Физические и электрические параметры компонентов изменяются в зависимости от температуры, давления, влажности и питающих напряжений. Кроме того, на частоту генерируемого сигнала влияет разброс параметров элементов, входящих в схему.

В настоящее время в связи с развитием цифровой и микропроцессорной техники, увеличением степени интеграции микросхем, имеется возможность генерации сигналов практически любой формы. Схемы применения цифро-аналоговых преобразователей относятся не только к области преобразования код - аналог. Пользуясь их свойствами можно определять произведения двух или более сигналов, строить делители функций, аналоговые звенья, управляемые от микроконтроллеров, такие как аттенюаторы, интеграторы. Важной областью применения ЦАП являются также генераторы сигналов, в том числе сигналов произвольной формы.