Большое внимание уделяется решению задачи синтеза синусоидальных колебаний с частотами, задаваемыми с высокой точностью[4].
Возможны три цифровых метода получения синусоидальных колебаний:
1.Метод с использованием таблицы
2.Метод рекурсивных вычислений
3.Метод, сочетающий использование таблицы и рекурсивные вычисления.
Обобщенная структурная схема первого метода показана на рисунке 1.1.1
Рисунок 1.1.1
Количество разрядов адресного регистра обращения к таблице синусов может превышать величину log2M (здесь М – размер таблицы синусов), которая необходима для вызова любого отсчета таблицы. Дело в том, что наименьшее приращение адреса определяет минимально возможное значение синтезируемой частоты. Например, таблица синусов может содержать М = 1024 отсчета, тогда как регистр адреса может иметь 20 разрядов. Это означает, что если приращение адреса равно единице, то 1024 раза подряд будет выбираться один и тот же отсчет синуса, после чего произойдет переход к следующему отсчету и т. д. При таких малых приращениях адреса получаемая цифровая синусоида будет очень неточной, а возникающие при этом искажения в спектре трудно устранить с помощь фильтра нижних частот.
Описанная ситуация представлена на рисунке 1.1.2
Рисунок 1.1.2
Для получения идеальной синусоиды необходимо, чтобы спектр искажений, обусловленных цифровым методом формирования синусоиды, располагался выше частоты среза аналогового фильтра нижних частот.
Вместо выбора отсчетов синусоиды из таблицы их можно рассчитывать с помощью простой рекурсивной формулы. Действительно, пусть x(n) – комплексная экспонента вида exp(2pkn/NT). Тогда устройство, работающее согласно формуле
X(n)= exp[(j2pk/NT)x(n-1)],
будет генерировать требуемую комплексную экспоненту, причем ее действительная часть будет косинусоидой, а мнимая – синусоидой частоты F= k/NT. При таком подходе, если не принимать во внимание эффекты квантования, можно получить идеальную цифровую синусоиду без обращения к таблице. Система (рисунок 1.1.3) начинает работу при поступлении внешнего единичного импульса. Изменение частоты достигается путем изменения значения к в показателе степени коэффициента умножителя, причем предусматривается также восстановление фазы при приходе внешнего импульса или использование последнего выходного отсчета в качестве нового начального условия [4].
Рисунок 1.1.3
К настоящему времени синтезаторы частот рассматриваемого типа еще не построены, поскольку существует опасение, что в такой системе будут накапливаться нежелательные шумы квантования. С другой стороны, из теории предельных циклов следует, что устойчивые колебания всегда будут иметь место. Однако неясно, будут ли они пригодны для получения чисто синусоидальных аналоговых колебаний. Еще одной причиной, препятствовавшей созданию устройства рассматриваемого типа, является неравномерность сетки часто, связанная с квантованием коэффициентов.
Третий способ получается сочетанием первых двух. Он заключается в использовании и вычислений и таблицы синусов.
В техническом задании указано, что кроме гармонического сигнала, проектируемое устройство должно формировать меандр и пилообразный сигнал. Формирование пилообразного сигнала и меандра с различной скважностью проще всего реализовать вычислением отсчетов по соответствующим формулам.
Для пилообразного сигнала: y(n)= kd, k= ( n mod N), d – константа
Mod – операция взятия остатка от деления нацело.
На рисунке 1.1.4 показан пилообразный сигнал, сформированный по этой формуле.
Рисунок 1.1.4
Меандр формируется по формуле: y(n)= d, при (n mod (N+M)) <N y(n)= 0, при других n
Вид получаемого сигнала показан на рисунке 1.1.5
Рисунок 1.1.5
Принимая во внимание все выше сказанное, было принято решение для получения точного гармонического сигнала формировать отсчеты с помощью вычислений, причем чтобы исключить накопление шумов квантования вычисления производятся с помощью прямой формулы (y(n)= Acos(2πfnT), где f – частота, Т – интервал дискретизации), а не рекурсивной. Вычисления отсчетов в реальном масштабе времени (т.е. одновременно с генерацией сигнала) требуют достаточно быстродействующего, а, следовательно, и дорогого, микропроцессора. Поэтому принято решение перед началом генерации вычислять массив отсчетов подлежащего генерации сигнала и записывать его в оперативное запоминающее устройство. Требования к системе позволяют применить данный способ формирования сигнала. Размер массива рассчитывается таким образом, чтобы в него укладывалось не менее одного периода, подлежащего генерации сигнала. Генерация сигнала производится периодическим повторением вычисленного фрагмента.
Оценим необходимый размер буфера для массива отсчетов, подлежащего генерации сигнала. Из курса теории сигналов, известно, что импульсный периодический сигнал имеет дискретный спектр. Спектр периодического сигнала представлен на рисунке 1.1.6.
Рисунок 1.1.6
Тп – период повторения сигнала
F – частота основного тона равная 1/ Тп
Спектр периодического сигнала содержит только гармоники с частотой кратной частоте основного тона. Частота основного тона обратнопропорциональна периоду сигнала. Согласно техническому заданию шаг изменения частоты 1 Гц. Периодический сигнал обладающий этим свойством должен иметь период повторения равным одной секунде. Размер массива отсчетов, подлежащего генерации сигнала, связан с периодом дискретизации. Частота дискретизации является количеством отсчетов необходимых для генерации единицы времени сигнала (одной секунды). В подобных системах частота дискретизации выбирается по теореме Котельникова (Частота дискретизации должна быть больше чем удвоенная верхняя частота дискретизируемого сигнала). Стандартная частота дискретизации 48 кГц полностью удовлетворяет условиям теоремы Котельникова.
Таким образом, для генерации сигнала необходим буфер содержащий не менее 48000 отсчетов сигнала (48000*16 бит= 93,75кБайт).
Подлежащий генерации сигнал изначально является последовательностью дискретных отсчетов в двоичном коде. Разрядность двоичного кода и частота дискретизации определяет точность представления аналогового сигнала. Данная последовательность двоичных отсчетов с частотой дискретизации поступает на цифроаналоговый преобразователь, который каждый период частоты дискретизации выдает напряжение, пропорциональное поступившему на его вход двоичному числу. Максимально возможное напряжение, которое может быть получено на выходе цифроаналогового преобразователя определяется опорным напряжением, поданным на него, и ограничивается только паспортными характеристиками. Таким образом, на выходе цифроаналогового преобразователя получается сигнал ступенчатой формы, для сглаживания которого применяют фильтры низкой частоты. На рисунке 1.1.7 слева изображено напряжение на выходе ЦАП а справа – напряжение с выхода ЦАП прошедшее через ФНЧ.
Рисунок 1.1.7
где U – напряжение
t - время
Данный фильтр должен пропускать без ослабления сигналы звуковой частоты с 20 до 20000 Гц и ослаблять высокочастотный шум, вносимый цифро-аналоговым преобразователем. Обычно используют фильтры Баттерворта, Чебышева, Бесселя различных порядков. Частоту среза данных фильтров при расчете берут большей, чем 20кГц, так как на частоте среза фильтра мощность сигнала ослабляется в 2 раза, а нам необходимо пропустить сигналы звуковой частоты без ослабления. Фильтр Баттерворта имеет плавно спадающую к верхним частотам АЧХ, крутизна, которой увеличивается при увеличении порядка фильтра. Фильтр Чебышева имеет равновеликие пульсации либо в полосе пропускания, либо в полосе затухания, величина которых зависит от порядка фильтра. Вид фильтра выбирают исходя из конкретных требований к изделию и применяемых технических решений. После фильтра получается плавно изменяющееся напряжение звуковой частоты.
Достижения цифровой техники позволяют в настоящее время всего на нескольких микросхемах построить высококачественный, дешевый и надежный генератор, обладающий широкими возможностями формирования сигналов.
1.2 Разработка структурной схемы измерителя
Исходя из требований технического задания, в состав изделия входят следующие устройства:
- персональный компьютер;
- интерфейс RS232;
- микропроцессор;
- блоки памяти;
- АЦП и ЦАП;
- источники питания.
Для удобного управления ходом измерений и отображения результатов измерений в удобном для пользователя виде, а также для проведения вычислений на компьютер необходимо установить соответствующее, специально написанное для этих целей, программное обеспечение. Для связи персонального компьютера с блоком измерителя необходим интерфейс RS232. Через этот интерфейс будет осуществляться передача команд от ПЭВМ (Персональная электронно-вычислительная машина) к блоку измерителя и получение ответов и выборки сигнала от блока. Таким образом, осуществляется управление процессом измерений. Для управления блоком измерителя и формирования сигналов, подлежащих генерации, в двоичном виде необходим микропроцессор. Микропроцессор будет функционировать в соответствии с программой записанной в постоянном запоминающем устройстве (ПЗУ). Для хранения данных в процессе работы микропроцессору необходимо оперативное запоминающее устройство (ОЗУ). Для приема данных из интерфейса RS232 и передачи данных через данный интерфейс необходимо устройство сопряжения интерфейса RS232 и микропроцессора. Данное устройство должно состоять из преобразователя стандартных уровней сигналов интерфейса RS232 (-12В и +12В) в уровни ТТЛ (Транзисторно-транзисторная логика) (0В и +5В). Далее последовательный код, используемый интерфейсом RS232, должен быть преобразован в параллельный для возможности передачи полученных через интерфейс RS232 байт по шине данных в микропроцессор и наоборот. Для формирования аналогового сигнала из дискретного двоичного сигнала, сформированного процессором, используется цифроаналоговый преобразователь. Для получения двоичной выборки аналогового сигнала используется аналого-цифровой преобразователь. Для управления амплитудой генерируемого сигнала и затухания входного сигнала, а также подключения (отключения) выхода генератора к входу анализатора используется устройство коммутации и аттенюации. Периодически подключая выход генератора измерителя к входу анализатора, осуществляется проверка работоспособности изделия. Для коммутации используются реле. Управление реле осуществляется уровнями ТТЛ, поступающими с регистра управления, которые служат для запоминания состояния измерителя. В качестве аттенюаторов используются ЦАПы (Цифро-аналоговый преобразователь). Данный ЦАП упрощенно можно представить в виде двух прецизионных резисторов R1 и R2, причем R2 перестраивается входным цифровым сигналом, поступающим на ЦАП, с высокой точностью. Если включить данные два резистора вместе с внешним операционным усилителем, как показано на рисунке 1.2.1, то получается схема с управляемым цифровым сигналом усилением, где коэффициент усиления равен отношению величин сопротивлений R1 и R2, которое в свою очередь определяется управляющим цифровым сигналом, поступающим на ЦАП.