Смекни!
smekni.com

Використання світловодів (стр. 1 из 3)

Черкаський національний університет ім. Богдана Хмельницького

Кафедра Загальної фізики

Використання світловодів

Реферативне повідомлення,

виконане студентом

2-А курсу фізичного факультету

Селегеєм Ярославом Володимировичем

Черкаси-2008


Зміст

Введення

1. Оптичне волокно, як середовище передачі даних.

2. Конструкція оптичного волокна

3. Параметри оптичних волокон

3.1 Геометричні

3.2 Оптичні

4. Використання світловодів.

Список використаної літератури.


Введення

Оптичне волокно вважається самим досконалим фізичним середовищем для передачі інформації, а також самим перспективним середовищем для передачі більших потоків інформації на значні відстані.

Науково-технічний напрямок, щозаймається розробкою й застосуванням оптичнихсвітоводів, називається волоконна оптика.

У цей час волоконно-оптичні кабелі прокладені по дну Тихого й Атлантичного океанів і практично увесь світ "обплутаний" мережею волоконних систем зв'язку (Laser Mag.-1993.-№3; Laser Focus World.-1992.-28, №12; Telecom. mag.-1993.-№25; AEU: J. Asia Electron. Union.-1992.-№5). Європейські країни через Атлантику зв'язані волоконними лініями зв'язку з Америкою. США через Гавайські острови й острів Гуам - з Японією, Новою Зеландією й Австралією. У мережу тихоокеанських ВОЛС увійшли Тайвань, Гонконг, Малайзия, Сінгапур, Філіппіни, Бруней, Тайланд, а також Корея й КНР. Волоконно-оптична лінія зв'язку з'єднує Японію й Корею з Далеким Сходом Росії. На заході Росія пов'язана з європейськими країнами ВОЛС С.-Петербург - Кінгісепп - Данія й С.-Петербург - Виборг - Фінляндія, на півдні - з азіатськими країнами ВОЛС Новоросійськ - Туреччина. У Європі, також, як й в Америці, ВОЛС давно вже знайшли саме широке застосування практично у всіх сферах зв'язку, енергетики, транспорту, науки, утворення, медицини, економіки, оборони, державно-політичної й фінансової діяльності.


1. Оптичне волокно як середовище передачі даних

Оптичне волокно (ОВ) є середовищем передачі інформації в оптичних системах зв'язку. Перше оптичне волокно із втратами 20 дБ/км (на довжині хвилі 0.633 мкм) було виготовлено фірмою Corning Glass Works в 1970 р. Однак прогрес у цій області був настільки стрімкий, що вже в 1972 р. втрати в ОВ досягли 4 дБ/км, а сучасні волокна мають втрати менш 0.2 дБ/км (на довжині хвилі 1.55 мкм). Причому настільки малі втрати сигналу зберігаються в дуже широкому діапазоні частот модуляції світла й зменшення амплітуди сигналу з ростом частоти модуляції обумовлено дисперсією, що для сучасних волокон зі зміщеною дисперсією становить величину порядку 3 пс/нм. км. Таким чином, смуга пропущення властиво волокна може перевищувати 100 Ггц. км. Споконвічне волокно, одержуване в процесі виготовлення, було винятково тендітним. Для його функціонування в якості надійного високоякісного компонента системи, волокно не повинне мати вад і бути захищеним від механічного впливу. Перед провідними вченими всього світу протягом багатьох років стояла, у якості основної, складна задача розвитку технології виробництва для досягнення високої механічної міцності, надійності й високоякісних передатних характеристик оптичних волокон. Ці завдання в цей час успішно вирішені. Сучасне волокно може бути зав'язане у вузол діаметром 5 мм і при цьому не руйнується. Технічної ж характеристики сучасних ОВ у плані передачі інформації настільки високі, що вони перебувають поза конкуренцією з іншими середовищами передачі даних. Розвиток поколінь волоконної оптики йшло в такий спосіб:

Системи першого покоління (1978-1982):

Довжина хвилі 0,85 мм,

Многомодове градієнтне волокно,

AlGaAs/GaAs світлодіодний або лазерний передавач, кремнієвий детектор.

Системи другого покоління (1983>):

Довжина хвилі 1,3 мм,

Одномодове волокно,

InGaAs/In лазерний (або світодіодний) передавач, Ge детектор.

Системи третього покоління (1989>):

Довжина хвилі 1,3 мм, 1,55 мм,

Одномодове волокно (також волокно зі зміщеною дисперсією),

InGaAs/In лазерний передавач, InGaAs/In детектор.

Будова світловода:

1. Осьовий елемент: сталевий канат у полімерному покритті; склопластиковий пруток у полімерному покритті

2. Оптичні волокна

3. Оптичні модулі

4. Гідроізоляція сердечника гідрофобний заповнювач або водобокуючі елементи

5. Гідроізоляція бронюючого шару гідрофобний заповнювач або водоблокуючі елементи

6. Сталева гофрована ламінована стрічка.

2. Конструкція оптичного волокна

Оптичне волокно складається зі светоловедучої серцевини, оточеною оболонкою, у яких різні показники заломлення.

Обидва елементи виробляються з високочистого кварцового скла. Отримане в процесі витяжки оптичне волокно потім покривається одним або двома шарами захисного пластикового покриття, розповсюдженим матеріалом для якого є акрилат. Від покриття залежить міцність волокна. В основі поширення світла по сердечнику лежить принцип повного внутрішнього відбиття, що реалізується за рахунок того, що коефіцієнт заломлення сердечника вище коефіцієнта заломлення оболонки. На вході волоконно-оптичного тракту модулююче джерело світла перетворить вхідні електричні сигнали в модульовані (як правило по інтенсивності) світло, що поширюється по волокну, пов'язаному із джерелом. На іншому, приймаючому кінці лінії оптичні сигнали перетворяться фотодетектором назад в електричні сигнали. На лініях великої довжини іноді використаються регенератори, що складаються із приймача, підсилювача й передавача. У сучасних Волоконно Оптичних Лініях Зв'язку також знаходять застосування оптичні підсилювачі. Оптичне волокно являє собою циліндр із легованого кварцового скла. Для передачі сигналів використаються два види волокна: одномодове й многомодове. Назва волокна одержали від способу поширення випромінювання в них. В одномодовому волокні діаметр світовідної жили порядку 8-10мкм, тобто зрівняємо з довжиною світлової хвилі. При такій геометрії у волокні може поширюватися тільки один промінь (одна мода) (мал.1).

Рис.1


У багатомодовому волокні розмір світловідної жили порядку 50-60мкм, що уможливлює поширення великої кількості променів (багато мод) (мал.2).

Рис.2

Обидва типи волокна характеризуються двома найважливішими параметрами: згасанням і дисперсією. Загасання звичайно виміряється в дб/км і визначається втратами на поглинання й на розсіювання випромінювання в оптичному волокні. Втрати на поглинання залежать від чистоти матеріалу, а на розсіювання - від неоднорідностей показника заломлення матеріалу.

Рис.3

Інший найважливіший параметр оптичного волокна - дисперсія. Дисперсія - це розсіювання в часі спекртальных і модових складових оптичного сигналу. Існує три типи дисперсії:

модова дисперсія – властива багатомодовому волокну й обумовлена великою кількістю числа мод, час поширення яких різний.

матеріальна дисперсія – обумовлена залежністю показника заломлення від довжини хвилі.

хвильова дисперсія – обумовлена процесами усередині моди й характеризується залежністю швидкості поширення моди від довжини хвилі.

Згасання й дисперсія в різних типах оптичних волокон різні, Одномодовіволокна мають кращі характеристики по згасанню й по смузі пропускання, тому що в них поширюється тільки один промінь. Однак, одномодові джерела випромінювання в кілька разів дорожче багатомодових. В одномодове волокно важче ввести випромінювання через малі розміри световодной жили, із цієї причини одномодові волокна складно зрощувати з малими втратами.

Оскільки світлодіод або лазер випромінює деякий спектр довжин хвиль, дисперсія приводить до розширення імпульсів при поширенню по волокну й тим самим породжує перекручування сигналів. При оцінці користуються терміном "смуга пропущення" - це величина, зворотна до величини розширення імпульсу при проходженні ним по оптичному волокну відстані в 1 км. Виміряється смуга пропущення в МГц*км. З визначення смуги пропущення видно, що дисперсія накладає обмеження на дальність передачі й на верхню частоту переданих сигналів.

Якщо при поширенні світла по багатомодовому волокну як правило переважає модовая дисперсія, то одномодовому волокну властиві тільки два останніх типи дисперсії. На довжині хвилі 1.3 мкм матеріальна й хвильова дисперсії в одномодовому волокні компенсують один одного, що забезпечує найвищу пропускну здатність.

Загасання й дисперсія в різних типів оптичних волокон різні. Одномодові волокна мають кращі характеристики по загасанню й по смузі пропущення, тому що в них поширюється тільки один промінь. Однак, одномодові джерела випромінювання в кілька разів дорожче багатомодових. В одномодовое волокно важче ввести випромінювання через малі розміри світловідної жили, по цій же причині одномодові волокна складно зрощувати з малими втратами. Оконцевание одномодових кабелів оптичними розніманнями також обходиться дорожче.

Багатомодові волокна більше зручні при монтажі, тому що в них розмір световодной жили в кілька разів більше, ніж в одномодових волокнах. Многомодовий кабель простіше оконцевать оптичними розніманнями з малими втратами (до 0.3 d) у стику. На многомодовое волокно розраховані випромінювачі на довжину хвилі 0.85 мкм - самі доступні й дешеві випромінювачі, що випускають у дуже різноманітному асортименті. Але загасання на цій довжині хвилі в багатомодових волокон перебуває в межах 3-4 Дб/км і не може бути істотно поліпшено. Смуга пропущення в багатомодових волокон досягає 800 Мгц*км, що прийнятно для локальних мереж зв'язку, але не досить для магістральних ліній.