Смекни!
smekni.com

Программатор микроконтроллеров и микросхем памяти (стр. 7 из 21)

- Лавинно-пролётный диод. Диод, работающий за счёт лавинного пробоя;

- Магнитодиод. Диод, вольт-амперная характеристика которого существенно зависит от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода;

- Стабисторы. При работе используется участок ветви вольт-амперной характеристики, соответствующий «прямому напряжению» на диоде;

- Смесительный диод — предназначен для перемножения 2-ух высокочастотных сигналов;

1) Диод Д310 (VD1-VD8, VD19-VD26) германиевый диффузионный. Выпускается в металлостеклянном корпусе с гибкими выводами. Масса диода не более 0,7 г.

Электрические параметры

Постоянное прямое напряжение при Iпр = 0,5 А при 298 К: ≤ 0,55 В;

Постоянное прямое напряжение при Iпр = 0,5 А при 213 К: ≤ 0,7 В;

Импульсное прямое напряжение при Iпр.н = 0,8 А: ≤ 2,4 В;

Постоянный обратный ток при Uобр = 20 В при123 К и 298 К: ≤ 20 мкА;

Постоянный обратный ток при Uобр = 20 В при 243 К: ≤ 150 мкА;

Общая ёмкость при Uобр = 20 В: ≤ 15 пФ;

Время прямого восстановления: ≤ 0,15 мкс;

Время обратного восстановления: ≤ 0,3 мкс.

Предельные эксплуатационные данные

Постоянное или импульсное обратное напряжение при температуре от 213 до 343 К: 20 В;

Однократная перегрузка по обратному напряжению в течение не более 0,5 с при 298 К: 35 В;

Постоянный прямой ток при температуре от 213 до 343 К: 500 мА;

Импульсный прямой ток при 213 до 343 К: 800 мА;

Средний выпрямляемый ток при температуре от 213 до 343 К: 250 мА;

Однократная перегрузка по прямому току в течение не более 0,5 с при 298 К: 1500 мА

Средняя рассеиваемая мощность при температуре от 213 до 343 К: 275 мВт;

Температура окружающей среды: 213…343 К.

2) Диод КД522Б (VD9-VD18, VD27-VD36) кремниевый эпитаксиально-планарный. Выпускаются в стеклянном корпусе с гибкими выводами. Диод номеруется тремя чёрными кольцевыми полосками на корпусе у положительного вывода. Масса диода не более 0,15 г.

Электрические параметры

Постоянное прямое напряжение при Iпр = 100 мА при 298 К: ≤ 1,1 В;

Постоянное прямое напряжение при Iпр = 0,5 А при 218 К: ≤ 1,5 В;

Постоянный обратный ток при Uобр = 50 В при 298 К: ≤ 5 мкА;

Постоянный обратный ток при Uобр = 50 В при 358 К: ≤ 50 мкА;

Заряд переключения при Iпр = 50 мА, Uобр.н = 10 В, Iотсч = 2 мА: 400 пКл;

Общая ёмкость при Uобр = 0 В: ≤ 4 пФ;

Время обратного восстановления: ≤ 4 нс.

Предельные эксплуатационные данные

Постоянное обратное напряжение при температуре от 213 до 353 К: 50 В;

Импульсное обратное напряжение при скважности ≤ 10: 60 В;

Однократная перегрузка по обратному напряжению в течение не более 0,5 с при 298 К: 35 В;

Средний прямой ток при температуре от 218 до 308 К: 100 мА;

Средний прямой ток при температуре 358 К: 50 мА;

Импульсный прямой ток без превышении среднего прямого тока при 218 до 308 К: 1500 мА;

Импульсный прямой ток без превышении среднего прямого тока при 358 К: 850 мА;

Температура окружающей среды: 218…358 К.

Температура перехода: 398 К.

3) Стабилизатор КС168А кремниевый сплавной. Выпускаются в металлостеклянном корпусе с гибкими выводами. Масса стабилизатора не более 1 г.

Электрические параметры

Напряжение стабилизации номинальное при 298 К, Iст = 10 мА: 6,8 В;

Температурный коэффициент напряжения стабилизации в диапазоне рабочей температуры: ± 0,06 %/К;

Постоянное прямое напряжение при 298 К, Iпр = 50 мА: ≤ 1 В;

Дифференциальное сопротивление при 298 К, Iст = 50 мА: ≤ 28 Ом;

Дифференциальное сопротивление при 298 К, Iст = 3 мА: ≤ 120 Ом;

Предельные эксплуатационные данные

Минимальный ток стабилизации: 3мА;

Максимальный ток стабилизации при температуре от 213 до 323 К: 45 мА;

Импульсный прямой ток: 90 мА;

Рассеиваемая мощность при температуре от 213 до 323 К:300 мВт;

Температура окружающей среды: 213…373 К.

3.2 Принцип работы схемы электрической принципиальной.

Схема программатора приведена на чертеже АКВТ.230101.ДП00.14.Э1. С помощью шины данных и сигналов управления, идущих с компьютера, программируются четыре микросхемы Д5-Д7. На выходе этих микросхем формируются сигналы, которые через соответствующие буферные каскады подаются непосредственно на панельки для программирования. На адресное пространство программируемой микросхемы сигналы Р0-Р7, Р16-Р23, Р32-Р35 подают высокое напряжение Е1, а сигналы Р8-Р15, Р24-Р31, Р36-Р39 - логические уровни. На шину данных программируемой микросхемы сигналы Р48-Р55 подают высокое напряжение Е1, а сигналы Р56-Р63 - логические уровни. Сигналы Р64-Р69, Р72-Р77, Р80-Р85, Р88-Р93 через ЦАП-ы D8-D11 и усилители формируют значения напряжений Е1-Е4 соответственно. Сигналы Р71, Р79, Р87, Р95 запрещают напряжения Е1-Е4; сигналы Р70, Р79, Р86, Р94 сглаживают фронты этих напряжений. Через линии Р40-Р47 можно прочитать данные программируемой микросхемы.

Разъем Х1 предназначен для стыковки программатора с параллельным портом IBM (стандартным кабелем от принтера). Каждый сигнал IBM обозначен соответствующей буквой.

Сигналы RD, WR, CS - выходные сигналы IBM, обозначены как инверсные. Это означает, что при установке битов 5 и 36 регистра управления порта в единичное состояние соответствующие сигналы будут иметь нулевое значение. Для выходного сигнала программатора CS знак инверсии означает, что при единичном значении этого сигнала соответствующий бит порта регистра состояния читается как нулевой. Названия сигналов, приведенные справа от стрелок, отражают их функциональное назначение.

Разъем Х2 предназначен для подключения одной из кроссовых плат, содержащих панельки для микросхем ПЗУ. На этот разъем выведены 20 сигналов адреса и 8 сигналов данных, причем единичное значение для любого из этих сигналов можно либо задавать равным +5 вольт, либо подключать к управляемому источнику питания Е1. Кроме того, на разъем выведены еще выходы четырех управляемых источников питания Е1..Е4 и напряжение +5 вольт. С помощью такого набора сигналов и напряжений можно реализовать чтение и прожигание практически любого типа микросхем ПЗУ.

Входные сигналы программатора D0-D7 (выходные сигналы регистра данных параллельного порта IBM) поступают с разъема Х1 на формирователь сигналов IBM, выполненный на микросхеме DD1 типа К555АП6. Эта микросхема представляет собой шинный формирователь, пропускающий 8 сигналов слева направо (когда на входе SD единичное значение сигнала) или справа налево (когда сигнал на входе SD нулевой), если значение сигнала XA на входе EZ нулевое (при единичном значении этого сиг­нала, т.е. в режиме чтения информации с микросхемы ПЗУ, все выходы мик­росхемы переходят в высокоимпедансное состояние).

Сигналы D0...D7 поступают также на регистр сигналов управления, выполненный на микросхеме DD2 типа К555ИР23. Байт из регистра данных порта IBM запоминается в этой микросхеме по положительному фронту сигнала XA, поступающего на вход С микросхемы. 6 выходных сигналов микросхемы используются для выбора одного из портов одной из четырех микросхем КР580ВВ55, а сигнал бита X3 предназначен для открытия формирователя сигналов адреса ПЗУ, выполненного на микросхеме DD17.

Регистр сигналов адреса включает в себя 2 микросхемы (DD5 и DD6) типа КР580ВВ55 и 20 формирователей сигналов, выполненных на логических микросхемах и транзисторах. Каждая из микросхем КР580ВВ55 содержит три 8-битных порта ввода/вывода (порты A, B и С). Все 3 порта микросхемы DD5 и 2 порта (В и С) микросхемы DD6, использующиеся для реализации регистра адреса, настраиваются (программным способом) на вывод. Для записи информации в какой-либо из этих портов сначала в регистр управляющих сигналов (микросхема DD3) записывается соответствующий управляющий байт (нулевое значение на выходе разряда 6 или 7 микросхемы DD3 выбирает одну из микросхем DD5 или DD6, а разряды 0 и 1 выбирают один из трех портов микросхемы), а затем задается нулевое значение сигнала записи (на входе WR микросхем DD5 и DD6). При этом информация с внутренней шины данных программатора (в данном случае это информация из регистра данных параллельного порта IBM) записывается в выбранный порт микросхемы DD5 или DD6. То есть, запись 20-разрядного адреса в регистр адреса осуществляется в несколько этапов. Младший байт адреса записывается в порт В микросхемы DD5, 2-й байт - в порт С микросхемы DD6, 3-й байт - в 4 старших разряда порта В микросхемы DD6. Порт А микросхемы DD5, порт А микросхемы DD6 и 4 младших бита порта В микросхемы DD6 используются для подключения шины адреса микросхемы ПЗУ к повышенному напряжению от регулируемого источника питания.

Рассмотрим формирователь младшего разряда адреса (остальные 19 формирователей аналогичны), который выполнен на микросхемах DD4.1, DD4.2 и транзисторе VT2. Если младший бит 2-го порта (порта В) микросхемы DD5 установлен в единичное состояние, то на выходе формирователя младшего разряда адреса (на выходе микросхемы DD4.1) будет нулевое напряжение. При нулевом значении этого бита выходной транзистор микросхемы DD4.1 (эта ми­кросхема - инвертор с открытым коллектором) закрыт, поэтому напряжение на выходе формирователя определяется состоянием младшего бита 1-го порта (порта А) микросхемы DD5. При единичном значении этого бита транзистор VT2 открыт, поэтому на выход формирователя будет поступать напряжение с уп­равляемого источника питания Е1 (через открытый транзистор VT2 и резистор R5). Если младший бит порта А микросхемы DD5 установлен в нулевое состоя­ние, то транзистор VT5 закрыт В результате на выход формирователя будет поступать через резистор R70 и диод VD9 напряжение +5 вольт.

Такое схемное решение формирователей адресных разрядов позволяет выбрать (программным способом) те контакты микросхемы ПЗУ, на которые требуется подавать напряжение, большее 5 вольт. Для большинства микросхем ПЗУ шина адреса 5-вольтовая. Для них надо устанавливать в нулевое состояние все биты портов А микросхем DD5, DD6 и 4 младших бита порта В микросхемы DD6. При этом транзисторы всех 20 формирователей адресных сигналов будут закрыты.

Регистр данных во многом похож на регистр адреса. Он включает в себя микросхему DD7 типа КР580ВВ55 и 8 формирователей сигналов, выполненных на логических микросхемах и транзисторах. В микросхеме DD8 используются 2 порта (А и В). В порт B записываются 8-разрядные данные, порт A используется для подключения шины данных микросхемы ПЗУ к управляемому источнику питания Е1. В регистре данных ПЗУ используются более мощные транзисторы, чем в регистре адреса ПЗУ. Поэтому формирователи сигналов данных несколько отличаются от рассмотренных ранее формирователей адрес­ных сигналов. При нулевом значении сигнала на входе формирователя млад­шего разряда данных (при нулевом значении бита 0 порта B микросхемы DD8) транзистор VT2 закрыт в любом случае (даже если соответствующий бит порта А микросхемы DD8 установлен в единичное состояние. Это предотвращает перегрузку микросхемы DD12.1. Данные, записываемые в порт В микросхемы DD6, проходят на выходы формирователей сигналов данных без инверсии (поскольку инвертируются 2 раза). Поэтому информация для шины данных ПЗУ задается в прямом коде (в отличие от адреса для микросхемы ПЗУ, который надо задавать в инверсном коде).