Обозначим полосу пропускания фильтра Dfфi, а частоту, соответствующую середине полосы, fф.ср.. Ясно, что полоса Dfфi должна быть не меньше, чем Dfci. Если Dfфi> Dfci, то в полосу данного фильтра попадает часть главного лепестка спектра «чужого» сигнала. Это эквивалентно помехе при опознавании сигнала. В расчете на идеальные фильтры, т.е. фильтры с идеально крутыми перепадами кривой затухания aфi, примем, что полоса Dfфi= Dfci, a «несущая» сигнала fci=fф.ср.
Рис. 2.10. Диаграмма распределения частот в канале
Следовательно, всю полосу канала для передачи элементарных сигналов Dfк, о которой говорится в задаче, придется разбить на три равных участка, а частоты, соответствующие серединам участков, объявить равными fci (см.рис.2.9).
Так мы получим количественные значения fci и Dfci, а следовательно, и длительность отрезка гармонического колебания tИ и длительность тактового интервала t0.
При этом мы полагаем, что tИ=t0, т.к. это не противоречит условиям задачи. Допустимо брать tИ<t0 (и это еще один источник неоднозначности решения), но это ведет к уменьшению скорости передачи при заданной широкополосности. В условиях данной задачи нет ничего такого, что мотивировало бы целесообразность такого решения, так как известно, что Dfc*tИ= m, а для радиоимпульса m =2.
Сделаем еще несколько замечаний относительно решения других задач.
В упражнениях 2.1, 2.3 схемы должны содержать те или иные функциональные узлы, генерирующие прямоугольные видеоимпульсы наперед заданной длительности. Чаще всего предлагают узлы на основе двоичного счетчика. Но в условиях этих упражнений нет ничего, что запрещало бы применение и аналоговых элементов, например, одновибраторов. Быть может, следует еще сказать, что конструирование схемы облегчается, если вы начнете с добротного изображения требуемой временной диаграммы.
Для решения задач 2.9, 2.10, 2.11 необходимо обратиться к интегралу вероятностей (см. прил. 1). Методика решения подобных задач рассмотрена, например, в [2].
РАЗДЕЛ 3. КАНАЛ С КОДИРОВАННЫМИ СИГНАЛАМИ. ПОМЕХОУСТОЙЧИВОЕ КОДИРОВАНИЕ, МАТРИЧНОЕ И ПОЛИНОМИАЛЬНОЕ ОПИСАНИЕ ЛИНЕЙНЫХ КОДОВ, ОЦЕНКИ ПОМЕХОУСТОЙЧИВОСТИ
Задача 3.1
Известно, что каноническая форма порождающей матрицы линейного (n,k)-кода имеет следующую структуру: G(n,k) = (I k | Dk, n-k), где I k - единичная матрица размерности k, а D - блок «дополнений» размерности k´(n–k), каждая строка которого имеет вес w(D i)≥ d0–1).
По заданной порождающей матрице (15,11)-кода с минимальным расстоянием d0 = 3, приведенной в шестнадцатеричном формате справа, напишите проверочную матрицу H(15,11), с помощью которой составьте список синдромов однократных ошибок в слове.
Напишите проверочную матрицу для укороченного (14,10)-кода.
Задача 3.2
В некоторой системе необходимо передавать до 12 сообщений. С целью обеспечения помехоустойчивости необходимо представить сообщения словами линейного (n, k)-кода, обеспечивающего вероятность безошибочной передачи сообщения (слова) не хуже, чем 0,9995, при том, что сигналы передаются по двоичному симметричному каналу с независимыми ошибками , вероятность происхождения которых Р0–1=Р1–0=РБ=10–4.
Требуется:
1) определить параметры слова избыточного (n, k)-кода;
2) написать порождающую G(n,k) и проверочную H(n,k) матрицы кода (в канонической форме);
3) изложить в графической или текстовой форме алгоритм работы декодера;
4) вычислить вероятности:
- предъявления получателю неискаженного сообщения (слова);
- предъявления получателю сообщения с незамеченными ошибками;
5)определить выигрыш в помехоустойчивости по сравнению с неизбыточным кодом:
- по вероятности получения неискаженного сообщения;
- по вероятности получения сообщения с незамеченными ошибками.
Задача 3.3
Напишите порождающую матрицу линейного (7,4)-кода с минимальным расстоянием d0=3. На ее основе получите матрицу укороченного (5,2)-кода. Напишите полный список кодовых слов, определите минимальное кодовое расстояние.
На основе той же исходной матрицы (7,4)-кода получите порождающую матрицу для расширенного (8,4)-кода с минимальным расстоянием d0 = 4.
Задача 3.4
Первичный преобразователь (датчик) технологического параметра измеряет уровень жидкости в некотором резервуаре. Результат измерения уровня («отсчет») отображается словом неизбыточного двоичного кода на все сочетания. Уровень жидкости меняется в пределах от 0 до 100 мм. Статическая погрешность измерения не превосходит ±1мм.
Для передачи сигналов используется двоичный симметричный канал без стирания и памяти. Вероятность ложного опознавания одного бита РБ=5*10–4.
Определите:
1) число состояний источника информации и минимальную длину слова неизбыточного кода;
2) вероятность получения сообщения с незамеченными ошибками («подмена сообщения»);
3) параметры избыточного линейного (n,k) - кода, обеспечивающего вероятность получения сообщения с незамеченными ошибками не хуже 10–6;
4) выигрыш в помехоустойчивости по отношению к неизбыточному коду, оцениваемый по вероятности «подмены сообщения», о которой шла речь в п.2;
5) проигрыш в скорости передачи сигналов по отношению к неизбыточному кодированию («относительную скорость» избыточного (n,k)-кода).
Задача 3.5
Первичный преобразователь технологического параметра представляет каждый отсчет измеряемого параметра (сообщение) трехразрядным десятичным числом в диапазоне от 00,0 до 99,9. Каждая десятичная цифра кодируется, в свою очередь, двоичным кодом с четным весом.
Информация передается по двоичному симметричному каналу без стирания и памяти, у которого вероятность искажения одного бита равна 10–4. Декодер канала декодирует слова с четным весом, обнаруживая ошибки.
Определите:
1) вероятность предъявления получателю безошибочного сообщения;
2) вероятность предъявления получателю ошибочного сообщения из-за незамеченных ошибок в сигнале.
Задача 3.6
Первичный преобразователь, как и в предыдущей задаче, каждое сообщение (отсчет) отображает последовательностью из трех десятичных цифр. Каждая десятичная цифра представлена словом, принадлежащим коду с постоянным весом.
Канал передачи элементарных сигналов - асимметричный, без памяти и стирания. Вероятность ложного опознавания «1» Р1–0=0,5*10–3, а ложного опознавания «0» Р0–1=2*10–3.
Требуется:
1) вычислить минимальную длину кодового слова. Если есть варианты, назначить (выбрать) значение веса слов;
2) вычислить вероятность предъявления получателю неискаженного сообщения;
3) вероятность предъявления получателю сообщения с незамеченными ошибками;
4) вычислить аналогичную вероятность при кодировании десятичной цифры неизбыточным кодом со словами длиной в четыре бита;
5) выигрыш в помехоустойчивости, оцениваемый по вероятности незамеченных ошибок, обеспечиваемый предлагаемым кодом с постоянным весом;
6) проигрыш в скорости передачи сообщений по сравнению с кодированием по п.4).
Упражнение 3.7
Напишите список слов (4,3)-циклического кода, заданного порождающим многочленом g(x) = x+1. Определите минимальное расстояние d0 данного кода.
Требуется:
1) построить на основе регистров сдвига структурную схему декодера, обнаруживающего ошибки в кодовых словах;
2) в рамках ограничений выбранной вами серии ТТЛ-схем построить функциональную схему декодера, включая реализацию ключей, управляющих работой регистров;
3) можно ли предложить циклический код с такой же длиной информационного блока (к=3) и таким же расстоянием d0, но с большей относительной скоростью?
Упражнение 3.8
Охарактеризуйте всевозможные конфигурации векторов ошибок, которые позволяет обнаруживать (7,4)-циклический код, образованный порождающим многочленом g(x) = x3+x+1 и имеющий минимальное расстояние d0=3.
Поясните, какие из перечисленных ошибок могут не обнаруживаться (7,4)-нециклическим кодом с тем же расстоянием. Приведите конкретные примеры таких ошибок.
Упражнение 3.9
На основе регистров сдвига постройте структурную схему декодера с исправлением однократных ошибок для укороченного (15,11)-циклического кода с минимальным расстоянием d0=3 и образующим многочленом g(x) = x4+x+1.
Напишите несколько слов, принадлежащих данному коду. С их помощью проиллюстрируйте поведение декодера в условиях возникновения одно- и двукратных ошибок в кодовых словах.
Нужно ли что–нибудь изменить в схеме декодера с тем, чтобы он декодировал слова укороченного (14,10)-кода?
Рекомендации по решению задач РАЗДЕЛА 3
Задачи 3.1, 3.2, 3.3 преследуют цель дать некоторый тренаж в манипулировании с каноническими формами матриц G(n,k) и H(n,k).
Напомним, что в принципе роль порождающей матрицы G может выполнять любая совокупность из k линейно-независимых векторов длины n, попарные расстояния среди которых не меньше d0. Каноническая форма матрицы предполагает определенную технологию ее формирования. Матрица G представляет собой блочную структуру типа