Випадкові процеси та одновимірні закони розподілу ймовірностей
Характер прийнятих сигналів як носіїв інформації є випадковим і заздалегідь не є відомий, тому з цього погляду сигнали треба розглядати як випадкові функції часу. Крім того, передавання інформації завжди супроводжується дією різноманітних завад та шумів, тому реальні сигнали є сумішшю корисного сигналу та завади.
Ha відміну від детермінованих сигналів, які не несуть інформації і однозначно визначають значення конкретного процесу в будь-який момент часу, перебіг випадкових сигналів передбачити неможливо. Проте, спостерігаючи за численними реалізаціями одного і того ж випадкового процесу під імовірнісним кутом зору, можна виявити певні закономірності, що характеризують цей процес, та визначити сукупність невипадкових числових характеристик, які описують його.
Математичною моделлю випадкового сигналу є випадкова функція. Випадкова функція будь-якого аргументу – це функція, значення якої при кожному значенні аргументу є випадкове. Випадкову функцію часу називають випадковим процесом. Випадковий процес позначимо функцією
Крім того, неможливо передбачити, яку саме реалізацію отримаємо при даному конкретному спостереженні. Кожне окреме спостереження називають дослідом або випробуванням.
Випадковий процес повністю характеризується нескінченно великою кількістю реалізацій, які утворюють ансамбль реалізацій. Ha основі дослідження заданого ансамблю можна визначити статистичні характеристики, властиві випадковому процесові.
Розглянемо
Ha рис. 1 показано перетин випадкового процесу
де
Рисунок 1 – Ансамбль реалізацій випадкового процесу
Позначимо число цих значень як
Ha практиці при достатньо великих
Діючи аналогічно для інших значень
Рисунок 2 – Одновимірна функція розподілу ймовірностей випадкового процесу
Функція
Тісно пов'язаною з одновимірною функцією розподілу ймовірностей випадкового процесу є одновимірна густина розподілу ймовірностей випадкового процесу, яку на основі ансамблю реалізацій наближено визначимо так:
де
За такого визначення густина розподілу теж має ступінчастий вигляд, як показано нa рис.
Рисунок 3 – Одновимірна густина розподілу ймовірностей
Підвищення точності визначення густини розподілу можна досягти зменшенням інтервалу
Із (6) бачимо, що густина розподілу є похідною по
Очевидно, що в загальному випадку графік функції
з якого випливає, що значення функції розподілу ймовірностей для аргументу
Очевидно, що ймовірність того, що значення випадкового процесу лежить у межах від
а ймовірність того, що випадкова функція
Отже, ймовірність того, що значення випадкової функції у момент
Співвідношення (9) називають умовою нормування.
Зауважимо також, що функції
Часто функцію розподілу ймовірностей